People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wendlandt, Robert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
The Impact of Ultrashort Pulse Laser Structuring of Metals on In-Vitro Cell Adhesion of Keratinocytes
Abstract
<jats:p>Besides the need for biomaterial surface modification to improve cellular attachment, laser-structuring is favorable for designing a new surface topography for external bone fixator pins or implants. The principle of this study was to observe how bioinspired (deer antler) laser-induced nano–microstructures influenced the adhesion and growth of skin cells. The goal was to create pins that allow the skin to attach to the biomaterial surface in a bacteria-proof manner. Therefore, typical fixator metals, steel, and titanium alloy were structured using ultrashort laser pulses, which resulted in periodical nano- and microstructures. Surface characteristics were investigated using a laser scanning microscope and static water contact angle measurements. In vitro studies with human HaCaT keratinocytes focused on cell adhesion, morphology, actin formation, and growth within 7 days. The study showed that surface functionalization influenced cell attachment, spreading, and proliferation. Micro-dimple clusters on polished bulk metals (DC20) will not hinder viability. Still, they will not promote the initial adhesion and spreading of HaCaTs. In contrast, additional nanostructuring with laser-induced periodic surface structures (LIPSS) promotes cell behavior. DC20 + LIPSS induced enhanced cell attachment with well-spread cell morphology. Thus, the bioinspired structures exhibited a benefit in initial cell adhesion. Laser surface functionalization opens up new possibilities for structuring, and is relevant to developing bioactive implants in regenerative medicine.</jats:p>