People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mikulewicz, Marcin
Wroclaw Medical University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Influence of Storing Composite Filling Materials in a Low-pH Artificial Saliva on Their Mechanical Properties—An In Vitro Studycitations
- 2023Correlation between friction and wear in cylindrical anchorages simulated with wear machine and analyzed with scanning probe and electron microscope
- 2023Comparative analysis of fused deposition modeling and digital light processing techniques for dimensional accuracy in clear aligner manufacturingcitations
- 2023Influence of storing composite filling materials in a low-pH artificial saliva on their mechanical properties— an in vitro studycitations
- 2023Comparison of the tensile modulus of three 3D-printable materials used in dentistry
- 2023Mechanical properties and biocompatibility of 3D printing acrylic material with bioactive componentscitations
- 2023The influence of polishing and artificial aging on BioMed Amber® resin’s mechanical propertiescitations
- 2023Multifunctional cellulose-based biomaterials for dental applications: a sustainable approach to oral health and regenerationcitations
- 2022Comparison of the compression and tensile modulus of two chosen resins used in dentistry for 3D printingcitations
- 2018Comparative assessment of the corrosion process of orthodontic archwires made of stainless steel, titanium–molybdenum and nickel–titanium alloyscitations
Places of action
Organizations | Location | People |
---|
article
Influence of Storing Composite Filling Materials in a Low-pH Artificial Saliva on Their Mechanical Properties—An In Vitro Study
Abstract
<jats:p>Restorative composites are subjected to various influences in the oral cavity environment, such as high or low temperatures, the mechanical force generated during mastication, colonization of various microorganisms, and low pH, which may result from ingested food and the influence of microbial flora. This study aimed to investigate the effect of a recently developed commercial artificial saliva (pH = 4, highly acidic) on 17 commercially available restorative materials. After polymerization, the samples were stored in an artificial solution for 3 and 60 days and subjected to crushing resistance and flexural strength tests. The surface additions of the materials were examined in terms of the shapes and sizes of the fillers and elemental composition. When stored in an acidic environment, the resistance of the composite materials was reduced by 2–12%. Larger compressive and flexural strength resistance values were observed for composites that could be bonded to microfilled materials (invented before 2000). This may result from the filler structure taking an irregular form, which results in a faster hydrolysis of silane bonds. All composite materials meet the standard requirements when stored for a long period in an acidic environment. However, storage of the materials in an acid environment has a destructive impact on the materials’ properties.</jats:p>