People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sauro, Salvatore
Universidad Cardenal Herrera CEU
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Experimental Composite Resin with Myristyltrimethylammonium Bromide (MYTAB) and Alpha-Tricalcium Phosphate (α-TCP): Antibacterial and Remineralizing Effect.citations
- 2023Release Kinetics of Monomers from Dental Composites Containing Fluoride-Doped Calcium Phosphatescitations
- 2022Physical-chemical and microbiological performances of graphene-doped PMMA for CAD/CAM applications before and after accelerated aging protocolscitations
- 2022RoBDEMAT: A risk of bias tool and guideline to support reporting of pre-clinical dental materials research and assessment of systematic reviewscitations
- 2021Commercially available ion-releasing dental materials and cavitated carious lesionscitations
- 2020Effects of Surface Treatments of Glass Fiber-Reinforced Post on Bond Strength to Root Dentine: A Systematic Review
- 2020Physicochemical and Antibacterial Properties of Novel, Premixed Calcium Silicate-Based Sealer Compared to Powder–Liquid Bioceramic Sealercitations
- 2020In vitro bonding performance of modern self-adhesive resin cements and conventional resin-modified glass ionomer cements to prosthetic substratescitations
- 2019Boron Nitride Nanotubes as Filler for Resin-Based Dental Sealantscitations
- 2019Co-blend application mode of bulk fill composite resincitations
- 2016Modifications in Glass Ionomer Cements:Nano-Sized Fillers and Bioactive Nanoceramicscitations
- 2013Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfacescitations
- 2012Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cementcitations
- 2011Porosity, Micro-Hardness and Morphology of White and Gray Portland Cements in Relation to Their Potential in the Development of New Dental Filling Materialscitations
- 2011Porosity, Micro-Hardness and Morphology of White and Gray Portland Cements in Relation to Their Potential in the Development of New Dental Filling Materialscitations
- 2006Effect of resin hydrophilicity and temperature on water sorption of dental adhesive resinscitations
Places of action
Organizations | Location | People |
---|
article
Experimental Composite Resin with Myristyltrimethylammonium Bromide (MYTAB) and Alpha-Tricalcium Phosphate (α-TCP): Antibacterial and Remineralizing Effect.
Abstract
The aim of this study was to develop an experimental composite resin with the addition of myristyltrimethylammonium bromide (MYTAB) and α -tricalcium phosphate (α-TCP) as an antibacterial and remineralizing material. Experimental composite resins composed of 75 wt% Bisphenol A-Glycidyl Methacrylate (BisGMA) and 25 wt% Triethylene Glycol Dimethacrylate (TEGDMA) were produced. Some 1 mol% Trimethyl benzoyl-diphenylphosphine oxide (TPO) was used as a photoinitiator, and butylated hydroxytoluene (BTH) was added as a polymerization inhibitor. Silica (1.5 wt%) and barium glass (65 wt%) particles were added as inorganic fillers. For remineralizing and antibacterial effect, α-TCP (10 wt%) and MYTAB (5 wt%) were incorporated into the resin matrix (α-TCP/MYTAB group). A group without the addition of α-TCP/MYTAB was used as a control. Resins were evaluated for their degree of conversion (n = 3) by Fourier Transform Infrared Spectroscopy (FTIR). The flexural strength (n = 5) was assessed based on ISO 4049:2019 requirements. Microhardness was assessed to calculate softening in solvent (n = 3) after ethanol immersion. The mineral deposition (n = 3) was evaluated after immersion in SBF, while cytotoxicity was tested with HaCaT cells (n = 5). Antimicrobial activity (n = 3) was analyzed against <i>S. mutans.</i> The degree of conversion was not influenced by the antibacterial and remineralizing compounds, and all groups reached values > 60%. The α-TCP/MYTAB addition promoted increased softening of polymers after immersion in ethanol and reduced their flexural strength and the viability of cells in vitro. A reduction in <i>S. mutans</i> viability was observed for the α-TCP/MYTAB group in biofilm formation and planktonic bacteria, with an antibacterial effect > 3log<sub>10</sub> for the developed materials. Higher intensity of phosphate compounds on the sample's surface was detected in the α-TCP/MYTAB group. The addition of α-TCP and MYTAB promoted remineralizing and antibacterial effects on the developed resins and may be a strategy for bioactive composites.