People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Par, Matej
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Emerging technologies for the evaluation of spatio-temporal polymerisation changes in flowable vs. sculptable dental resin-based composites ; ENEngelskEnglishEmerging technologies for the evaluation of spatio-temporal polymerisation changes in flowable vs. sculptable dental resin-based compositescitations
- 2023Water-Induced Changes in Experimental Resin Composites Functionalized with Conventional (45S5) and Customized Bioactive Glasscitations
- 2023Water-Induced Changes in Experimental Resin Composites Functionalized with Conventional (45S5) and Customized Bioactive Glass.citations
- 2022Using Copper-Doped Mesoporous Bioactive Glass Nanospheres to Impart Anti-Bacterial Properties to Dental Compositescitations
- 2022Impact of Copper-Doped Mesoporous Bioactive Glass Nanospheres on the Polymerisation Kinetics and Shrinkage Stress of Dental Resin Compositescitations
- 2022Impact of Copper-Doped Mesoporous Bioactive Glass Nanospheres on the Polymerisation Kinetics and Shrinkage Stress of Dental Resin Compositescitations
- 2022Impact of copper-doped mesoporous bioactive glass nano-spheres on the polymerisation kinetics and shrinkage stress of dental resin composites ; ENEngelskEnglishImpact of copper-doped mesoporous bioactive glass nano-spheres on the polymerisation kinetics and shrinkage stress of dental resin compositescitations
- 2022Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glasscitations
- 2022Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass.citations
- 2021Compressive Strength of Conventional Glass Ionomer Cement Modified with TiO2 Nano-Powder and Marine-Derived HAp Micro-Powdercitations
- 2021Anti-demineralizing protective effects on enamel identified in experimental and commercial restorative materials with functional fillers
- 2021Incorporation of Copper-Doped Mesoporous Bioactive Glass Nanospheres in Experimental Dental Composites: Chemical and Mechanical Characterizationcitations
- 2021Incorporation of Copper-Doped Mesoporous Bioactive Glass Nanospheres in Experimental Dental Composites: Chemical and Mechanical Characterizationcitations
- 2020Bioactivity and Physico-Chemical Properties of Dental Composites Functionalized with Nano- vs. Micro-Sized Bioactive Glasscitations
- 2020Effect of Over-Etching and Prolonged Application Time of a Universal Adhesive on Dentin Bond Strengthcitations
Places of action
Organizations | Location | People |
---|
article
Water-Induced Changes in Experimental Resin Composites Functionalized with Conventional (45S5) and Customized Bioactive Glass.
Abstract
The aim of the study was to evaluate microhardness, mass changes during 1-year water immersion, water sorption/solubility, and calcium phosphate precipitation of experimental composites functionalized with 5-40 wt% of two types of bioactive glass (BG): 45S5 or a customized low-sodium fluoride-containing formulation. Vickers microhardness was evaluated after simulated aging (water storage and thermocycling), water sorption and solubility were tested according to ISO 4049, and calcium phosphate precipitation was studied by scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. For the composites containing BG 45S5, a significant reduction in microhardness was observed with increasing BG amount. In contrast, 5 wt% of the customized BG resulted in statistically similar microhardness to the control material, while higher BG amounts (20 and 40 wt%) resulted in a significant improvement in microhardness. Water sorption was more pronounced for composites containing BG 45S5, increasing 7-fold compared to the control material, while the corresponding increase for the customized BG was only 2-fold. Solubility increased with higher amounts of BG, with an abrupt increase at 20 and 40 wt% of BG 45S5. Calcium phosphate was precipitated by all composites with BG amounts of 10 wt% or more. The improved properties of the composites functionalized with the customized BG indicate better mechanical, chemical, and dimensional stability without compromising the potential for calcium phosphate precipitation.