Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dudea, Diana

  • Google
  • 1
  • 8
  • 10

Iuliu Hațieganu University of Medicine and Pharmacy

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Chemical and Structural Assessment of New Dental Composites with Graphene Exposed to Staining Agents10citations

Places of action

Chart of shared publication
Furtos, Gabriel
1 / 3 shared
Ionescu, Andrei
1 / 3 shared
Moldovan, Marioara
1 / 5 shared
Sarosi, Codruta
1 / 3 shared
Ilie, Nicoleta
1 / 6 shared
Prodan, Doina
1 / 6 shared
Cuc, Stanca
1 / 6 shared
Petean, Ioan
1 / 6 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Furtos, Gabriel
  • Ionescu, Andrei
  • Moldovan, Marioara
  • Sarosi, Codruta
  • Ilie, Nicoleta
  • Prodan, Doina
  • Cuc, Stanca
  • Petean, Ioan
OrganizationsLocationPeople

article

Chemical and Structural Assessment of New Dental Composites with Graphene Exposed to Staining Agents

  • Dudea, Diana
  • Furtos, Gabriel
  • Ionescu, Andrei
  • Moldovan, Marioara
  • Sarosi, Codruta
  • Ilie, Nicoleta
  • Prodan, Doina
  • Cuc, Stanca
  • Petean, Ioan
Abstract

<jats:p>Among the newest trends in dental composites is the use of graphene oxide (GO) nanoparticles to assure better cohesion of the composite and superior properties. Our research used GO to enhance several hydroxyapatite (HA) nanofiller distribution and cohesion in three experimental composites CC, GS, GZ exposed to coffee and red wine staining environments. The presence of silane A-174 on the filler surface was evidenced by FT-IR spectroscopy. Experimental composites were characterized through color stability after 30 days of staining in red wine and coffee, sorption and solubility in distilled water and artificial saliva. Surface properties were measured by optical profilometry and scanning electron microscopy, respectively, and antibacterial properties wer e assessed against Staphylococcus aureus and Escherichia coli. A colour stability test revealed the best results for GS, followed by GZ, with less stability for CC. Topographical and morphological aspects revealed a synergism between GZ sample nanofiller components that conducted to the lower surface roughness, with less in the GS sample. However, surface roughness variation due to the stain was affected less than colour stability at the macroscopic level. Antibacterial testing revealed good effect against Staphylococcus aureus and a moderate effect against Escherichia coli.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • laser emission spectroscopy
  • composite
  • Fourier transform infrared spectroscopy
  • profilometry