Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marcello, Elena

  • Google
  • 4
  • 23
  • 92

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 20243D Melt-Extrusion Printing of Medium Chain Length Polyhydroxyalkanoates and Their Application as Antibiotic-Free Antibacterial Scaffolds for Bone Regeneration2citations
  • 2021Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration22citations
  • 2020Antimicrobial materials with lime oil and a poly(3-hydroxyalkanoate) produced via valorisation of sugar cane molasses34citations
  • 2016From micro- to nanostructured implantable device for local anesthetic delivery34citations

Places of action

Chart of shared publication
Prieto, M. Auxiliadora
1 / 2 shared
Nigmatullin, Rinat
3 / 10 shared
Boccaccini, Ar
1 / 302 shared
Basnett, Pooja
3 / 7 shared
Knowles, Jonathan C.
2 / 33 shared
Maqbool, Muhammad
2 / 13 shared
Roy, Ipsita
3 / 17 shared
Jackson, Philip R.
1 / 2 shared
Boccaccini, Aldo R.
1 / 77 shared
Cresswell, Mark
1 / 7 shared
Gurumayum, Bhavana
1 / 1 shared
Lukasiewicz, Barbara
1 / 3 shared
Paxinou, Alexandra
1 / 1 shared
Ahmad, Muhammad Haseeb
1 / 1 shared
Zorzetto, Laura
1 / 7 shared
Allegri, Massimo
1 / 1 shared
Petrini, Paola
1 / 1 shared
Peloso, Andrea
1 / 1 shared
Brambilla, Paola Giuseppina
1 / 1 shared
De Gregori, Manuela
1 / 1 shared
Cobianchi, Lorenzo
1 / 1 shared
Bloise, Nora
1 / 3 shared
Visai, Livia
1 / 23 shared
Chart of publication period
2024
2021
2020
2016

Co-Authors (by relevance)

  • Prieto, M. Auxiliadora
  • Nigmatullin, Rinat
  • Boccaccini, Ar
  • Basnett, Pooja
  • Knowles, Jonathan C.
  • Maqbool, Muhammad
  • Roy, Ipsita
  • Jackson, Philip R.
  • Boccaccini, Aldo R.
  • Cresswell, Mark
  • Gurumayum, Bhavana
  • Lukasiewicz, Barbara
  • Paxinou, Alexandra
  • Ahmad, Muhammad Haseeb
  • Zorzetto, Laura
  • Allegri, Massimo
  • Petrini, Paola
  • Peloso, Andrea
  • Brambilla, Paola Giuseppina
  • De Gregori, Manuela
  • Cobianchi, Lorenzo
  • Bloise, Nora
  • Visai, Livia
OrganizationsLocationPeople

article

Antimicrobial materials with lime oil and a poly(3-hydroxyalkanoate) produced via valorisation of sugar cane molasses

  • Nigmatullin, Rinat
  • Gurumayum, Bhavana
  • Marcello, Elena
  • Lukasiewicz, Barbara
  • Basnett, Pooja
  • Paxinou, Alexandra
  • Ahmad, Muhammad Haseeb
  • Roy, Ipsita
Abstract

A medium chain-length polyhydroxyalkanoate (PHA) was produced by Pseudomonas mendocina CH50 using a cheap carbon substrate, sugarcane molasses. A PHA yield of 14.2% dry cell weight was achieved. Chemical analysis confirmed that the polymer produced was a medium chain-length PHA, a copolymer of 3-hydroxyoctanoate and 3-hydroxydecanoate, P(3HO-co-3HD). Lime oil, an essential oil with known antimicrobial activity, was used as an additive to P(3HO-co-3HD) to confer antibacterial properties to this biodegradable polymer. The incorporation of lime oil induced a slight decrease in crystallinity of P(3HO-co-3HD) films. The antibacterial properties of lime oil were investigated using ISO 20776 against Staphylococcus aureus 6538P and Escherichia coli 8739, showing a higher activity against the Gram-positive bacteria. The higher activity of the oil against S. aureus 6538P defined the higher efficiency of loaded polymer films against this strain. The effect of storage on the antimicrobial properties of the loaded films was investigated. After one-year storage, the content of lime oil in the films decreased, causing a reduction of the antimicrobial activity of the materials produced. However, the films still possessed antibacterial activity against S. aureus 6538P.

Topics
  • Carbon
  • copolymer
  • crystallinity
  • lime