People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mehdinia, Meysam
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Developing Bio-Nano Composites Using Cellulose-Nanofiber-Reinforced Epoxy
Abstract
<jats:p>This study introduces the development of a novel bio-nano composite via the dispersion of cellulose nanofibers (CNF) in epoxy. The surface of cellulose nanofibers was functionalized using a two-step chemical treatment to enhance dispersion. The interfacial characteristics of CNF were improved using alcohol/acetone treatments. The modified CNF (M-CNF) demonstrated enhanced compatibility and improved dispersion in the epoxy matrix as evidenced by scanning electron microscopy. Based on the analysis of X-ray diffraction patterns, M-CNF did not disturb the crystalline phases at the interface. The results of mechanical testing showed that M-CNF worked as a reinforcing agent in the bio-nano composite. The flexural modulus increased from 1.4 to 3.7 GPa when M-CNF was introduced. A similar trend was observed for tensile strength and impact resistance. The optimum performance characteristics were observed at M-CNF of 0.6%. At higher dosages, some agglomeration was observed, which weakened the interfacial properties. This study promotes sustainability and resource conservation while offering CNF as a sustainable reinforcing agent to develop bio-nano composites.</jats:p>