People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duraccio, Donatella
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024UV-curable coatings for energy harvesting applications: Current state-of-the-art and future perspectivescitations
- 2024Influence of Dry-Mixing and Solvent Casting Blending Techniques on the Mechanical and Biological Behavior of Novel Biocompatible Poly(ε-caprolactone)/Alumina-Toughened Zirconia Scaffolds Obtained by 3D Printingcitations
- 2023Mechanical and Biological Characterization of PMMA/Al2O3 Composites for Dental Implant Abutmentscitations
- 2023Mechanical and Biological Characterization of PMMA/Al2O3 Composites for Dental Implant Abutmentscitations
- 2023Influence of Mechanical Properties on the Piezoelectric Response of UV-Cured Composite Films Containing Different ZnO Morphologiescitations
- 2023Tailoring the Magnetic and Electrical Properties of Epoxy Composites Containing Olive-Derived Biochar through Iron Modificationcitations
- 2022Ethylene-Vinyl Acetate (EVA) containing waste hemp-derived biochar fibers: mechanical, electrical, thermal and tribological behaviorcitations
- 2022Electrical measurements of ultra high molecular weight polyethylene composites as indicators of the manufacturing process reproducibility
- 2022Influence of different dry-mixing techniques on the mechanical, thermal, and electrical behavior of ultra-high molecular weight polyethylene/exhausted tire carbon compositescitations
- 2022Mechanical, electrical, thermal and tribological behavior of epoxy resin composites reinforced with waste hemp-derived carbon fiberscitations
- 2021Synthesis and characterization of UV-curable nanocellulose/ZnO/AlN acrylic flexible films: thermal, dynamic mechanical and piezoelectric responsecitations
- 2021Rheological, mechanical, thermal and electrical properties of UHMWPE/CNC compositescitations
- 2020Synthesis and piezoelectric characterization of UV-Curable Nanocellulose/ZnO/AlN polymeric flexible films for green energy generation applicationscitations
- 2019Approximate Mechanical Properties of Clamped–Clamped Perforated Membranes From In-Situ Deflection Measurements Using a Stylus Profilercitations
- 2018Fast multi-parametric method for mechanical properties estimation of clamped—clamped perforated membranes
- 2018UV-Cured Composite Films Containing ZnO Nanostructures: Effect of Filler Shape on Piezoelectric Responsecitations
- 2017Preparation and characterization of UV-cured composite films containing ZnO nanostructures: effect of filler geometric features on piezoelectric responsecitations
- 2011Polymer dynamics in epoxy/alumina nanocomposites studied by various techniquescitations
- 2010Isotactic polypropylene composites reinforced with multiwall carbon nanotubes, part 2: Thermal and mechanical properties related to the structurecitations
Places of action
Organizations | Location | People |
---|
article
Influence of Dry-Mixing and Solvent Casting Blending Techniques on the Mechanical and Biological Behavior of Novel Biocompatible Poly(ε-caprolactone)/Alumina-Toughened Zirconia Scaffolds Obtained by 3D Printing
Abstract
<jats:p>This work focuses on the study and comparison of two mixing methods for the dispersion of Alumina-Toughened Zirconia (ATZ) within the polymer matrix of Poly(ε-caprolactone) (PCL). The dry-mixing method using solvent-free impact milling (M) and the solvent casting method with chloroform (SC) were investigated. Samples were produced by 3D printing, and specimens were printed at increasing ATZ loadings (namely, 10, 20, and 40 wt.%). The chemico-physical, mechanical, and cell interaction characteristics of the materials prepared with both mixing methods were studied. Solvent mixing allowed better dispersion of the ATZ in the polymer matrix with respect to dry mixing. In addition, dry mixing affected the molecular weight of the PCL/ATZ composites much more than the solvent casting method. For these reasons, materials obtained by solid mixing exhibited the worst mechanical performance with respect to those obtained by solvent casting, which showed increased Young’s moduli with increasing ATZ amounts. The in vitro biological response elicited in a mesenchymal stem cell model seemed to be influenced by the mixing method, with a preference for the composites obtained through solvent mixing and containing 20 or 40 wt.% of ATZ.</jats:p>