People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ravindran, Bharath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Impact Characteristics and Repair Approaches of Distinct Bio-Based Matrix Composites: A Comparative Analysiscitations
- 2024Near-infrared spectroscopy in resin transfer molding—determination of the degree of cure
- 2024Manufacturing bio-based fiber-reinforced polymer composites: Process performance in RTM and VARI processescitations
- 2023Investigation of the Mechanical Properties of Sandwich Composite Panels Made with Recyclates and Flax Fiber/Bio-Based Epoxy Processed by Liquid Composite Moldingcitations
Places of action
Organizations | Location | People |
---|
article
Impact Characteristics and Repair Approaches of Distinct Bio-Based Matrix Composites: A Comparative Analysis
Abstract
Increasing global concerns regarding environmental issues have driven significant advancements in the development of bio-based fiber reinforced polymer composites. Despite extensive research on bio-composites, there remains a noticeable gap in studies specifically addressing the challenges of repairing bio-composites for circular economy adoption. Traditional repair techniques for impacted composites, such as patching or scarf methods, are not only time-consuming but also require highly skilled personnel. This paper aims to highlight cost-effective repair strategies for the restoration of damaged composites, featuring flax fiber as the primary reinforcement material and distinct matrix systems, namely bio-based epoxy and bio-based vitrimer matrix. Glass fiber was used as a secondary material to validate the bio-based vitrimer matrix. The damage caused specifically by low impact is detrimental to the structural integrity of the composites. Therefore, the impact resistance of the two composite materials is evaluated using instrumented drop tower tests at various energy levels, while thermography observations are employed to assess damage evolution. Two distinct repair approaches were studied: the resin infiltration repair method, employing bio-based epoxy, and the reconsolidation (self-healing) repair method, utilizing the bio-based vitrimer matrix. The efficiency of these repair methods was assessed through active thermography and compression after impact tests. The repair outcomes demonstrate successful restoration and the maintenance of ultimate strength at an efficiency of 90% for the re-infiltration repair method and 92% for the reconsolidation repair method.