People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shettar, Manjunath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Synergistic Enhancement of the Mechanical Properties of Epoxy-Based Coir Fiber Composites through Alkaline Treatment and Nanoclay Reinforcementcitations
- 2024Assessment of Wear and Surface Roughness Characteristics of Polylactic Acid (PLA)—Graphene 3D-Printed Composites by Box–Behnken Methodcitations
- 2023Prediction of age-hardening behaviour of LM4 and its composites using artificial neural networkscitations
- 2023Experimental Investigation of Mechanical Property and Wear Behaviour of T6 Treated A356 Alloy with Minor Addition of Copper and Zinccitations
- 2022OPTIMIZATION AND PREDICTION OF THE HARDNESS BEHAVIOUR OF LM4 + SI3N4 COMPOSITES USING RSM AND ANN - A COMPARATIVE STUDYcitations
- 2022Water Sorption-Desorption-Resorption Effects on Mechanical Properties of Epoxy-Nanoclay Nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Synergistic Enhancement of the Mechanical Properties of Epoxy-Based Coir Fiber Composites through Alkaline Treatment and Nanoclay Reinforcement
Abstract
<jats:p>This study explores the synergistic effects of incorporating coir fibers and nanoclay into epoxy resin composites. Coir, a renewable and cost-effective natural fiber, undergoes an alkaline treatment to influence its ability to form strong interfacial bonding with the epoxy matrix. To further enhance the mechanical properties of the composite, montmorillonite nanoclay, surface-modified with aminopropyltriethoxysilane and octadecyl amine, is introduced. The research investigates different combinations of coir fiber content (20, 30, and 40 wt%) and nanoclay loading (0, 2, and 4 wt%) with epoxy resin. The composites are fabricated through an open molding process, and the mechanical properties are evaluated using tensile and flexural tests according to the ASTM D638 and D7264 standards, respectively. The tensile and flexural strengths of the 40 wt% coir fiber-reinforced epoxy composite are found to be 77.99 MPa and 136.13 MPa, which are 44% and 23% greater than pure epoxy, respectively. Furthermore, the strengths displayed a 23% improvement in tensile strength with 4 wt% and a 31.4% improvement in flexural strength with 2 wt% nanoclay as additional reinforcement. Scanning electron microscopy is employed for fractographic analysis of the fractured specimens from the tensile test. The study underscores the importance of understanding the interplay between natural fibers, nanoclay, and epoxy resin for optimizing the composite’s performance in real-world applications.</jats:p>