Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sun, Tingting

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Experimental and Numerical Analysis of Axial Behavior of Triaxial Woven Fabric Confined Concrete Columns2citations

Places of action

Chart of shared publication
Ahmad, Nauman
1 / 3 shared
Sadannavar, Mohmadarslan Kutubuddin
1 / 1 shared
Abraha, Kahsay Gebresilassie
1 / 2 shared
Ahmed, Khalil
1 / 3 shared
Li, Wei
1 / 3 shared
Zhang, Honghua
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ahmad, Nauman
  • Sadannavar, Mohmadarslan Kutubuddin
  • Abraha, Kahsay Gebresilassie
  • Ahmed, Khalil
  • Li, Wei
  • Zhang, Honghua
OrganizationsLocationPeople

article

Experimental and Numerical Analysis of Axial Behavior of Triaxial Woven Fabric Confined Concrete Columns

  • Ahmad, Nauman
  • Sadannavar, Mohmadarslan Kutubuddin
  • Abraha, Kahsay Gebresilassie
  • Ahmed, Khalil
  • Li, Wei
  • Sun, Tingting
  • Zhang, Honghua
Abstract

<jats:p>Continuous efforts are being made to improve plain concrete compressive strength and ductility by applying carbon, glass fiber, or hybrid-reinforced epoxy resin composites. The investigation centers on analyzing the axial compressive strength and strain, compressive stress–strain behavior, failure morphology, and crack evolution of the reinforced cylinders. Besides the experiments, non-linear finite element analysis was performed using the finite element (FE) package ABAQUS 2021. The test results indicate that carbon fiber triaxial woven fabric (TWF-C) confinement result in the most significant improvement of 118% in compressive stress than the concrete specimens. On the other hand, glass fiber triaxial woven fabric (TWF-G) confinement shows the highest enhancement of 161% in ductility. The mechanical properties of the sample utilizing glass fiber as the weft yarn and carbon fiber as the warp yarn (TWF-GC2) exhibit superior improvements of 22% in compressive stress and 8% in axial strain compared to the sample using glass fiber as the warp yarn and carbon fiber as the weft yarn (TWF-CG2). Samples with glass fiber as weft yarn show gradual cracks during loading, while carbon fiber as weft yarn show instantaneous damage. The numerical finite element models accurately predict the experimental results of the tested specimens in this study. There were 1.2~3% and 5~10% discrepancies for compressive stress and axial strain, respectively, between experimental and FE results. Overall, the results suggest that Triaxial woven fabric confinement is a valuable technique to improve the strength and strain of concrete and that the type of fibers used could be tailored for appropriate performance characteristics.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • experiment
  • glass
  • glass
  • crack
  • strength
  • composite
  • resin
  • ductility
  • finite element analysis
  • woven