People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dimić-Mišić, Katarina
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Heterogeneous Hierarchical Self-Assembly Forming Crystalline Nanocellulose–CaCO3 Hybrid Nanoparticle Biocompositescitations
- 2021Iso‐ and anisotropic etching of micro nanofibrillated cellulose films by sequential oxygen and nitrogen gas plasma exposure for tunable wettability on crystalline and amorphous regionscitations
- 2019Nitrogen plasma surface treatment for improving polar ink adhesion on micro/nanofibrillated cellulose filmscitations
- 2017Rheology of nanocellulose-rich aqueous suspensionscitations
- 2017Acid dissociation of surface bound water on cellulose nanofibrils in aqueous micro nanofibrillated cellulose (MNFC) gel revealed by adsorption of calcium carbonate nanoparticles under the application of ultralow shearcitations
- 2016Gel structure phase behavior in micro nanofibrillated cellulose containing in situ precipitated calcium carbonatecitations
- 2016Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gelcitations
- 2014Micro and nanofibrillated cellulose (MNFC) as additive in complex suspensions: influence on rheology and dewatering
- 2013The influence of shear on the dewatering of high consistency nanofibrillated cellulose furnishescitations
Places of action
Organizations | Location | People |
---|
article
Heterogeneous Hierarchical Self-Assembly Forming Crystalline Nanocellulose–CaCO3 Hybrid Nanoparticle Biocomposites
Abstract
The SEM image of low-concentration suspension of CNC particles was provided by Imani Monireh, Aalto University. ; Nanocellulose is increasingly proposed as a sustainable raw material having strong interparticle bonding. However, cellulose alone has limited bending and impact resistance. We newly observe self-assembly between crystalline nanocellulose (CNC) and ultrafine ground chemical-free calcium carbonate nanoparticles (UGCC). The suspension displays an intrinsic gel-like state, and heterogeneous adsorption occurs under the specific conditions where Brownian motion of both species is arrested by application of ultralow shear (0.01 s−1). In contrast, simple static aging of the mixture leads to autoflocculation of each species independently. The heterogeneous adsorption results in compound particle self-assembly leading to multi-level hierarchical structures depending on relative species size and concentration ratio. Fine particles from species 1 adsorb onto the coarser complementary particles of species 2 and vice versa. Depending also on whether CNC or UGCC particles are in excess, the structural assembly occurs primarily through either CNC–CNC hydrogen bonding or CaCO3–CaCO3 autogenous flocculation, respectively. Controlling the hierarchical composite structure bonding in this way, the resulting morphology can express dual or predominantly single either mineralic or cellulosic surface properties. Novel complex hybrid biocomposite materials can therefore be produced having designable compatibility across a broad range of both natural and oil-based polymeric materials. Both CNC and UGCC are exemplified here via commercial products. ; Peer reviewed