Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paleo, Antonio J.

  • Google
  • 8
  • 29
  • 137

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023Carbon Nanotube–Polyurethane Composite Sheets for Flexible Thermoelectric Materials9citations
  • 2023Comparative Thermoelectric Properties of Polypropylene Composites Melt-Processed Using Pyrograf® III Carbon Nanofibers8citations
  • 2023Thermoelectric Properties of Cotton Fabrics Dip-Coated in Pyrolytically Stripped Pyrograf® III Carbon Nanofiber Based Aqueous Inks3citations
  • 2022Dielectric spectroscopy of melt-mixed polypropylene and pyrolytically stripped carbon nanofiber composites4citations
  • 2022Electrical properties of melt-mixed polypropylene and as-grown carbon nanofiber composites: analysis of their interphase via the AC conductivity modeling6citations
  • 2022Nonlinear Thermopower Behaviour of N-Type Carbon Nanofibres and Their Melt Mixed Polypropylene Composites6citations
  • 2021Thermoelectric properties of polypropylene carbon nanofiber melt-mixed composites: exploring the role of polymer on their Seebeck coefficient15citations
  • 2018Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes86citations

Places of action

Chart of shared publication
Ashrafi, Behnam
1 / 9 shared
Martinez-Rubi, Yadienka
1 / 2 shared
Krause, Beate
5 / 89 shared
Kingston, Christopher
1 / 2 shared
Jakubinek, Michael B.
1 / 3 shared
Pötschke, Petra
5 / 330 shared
Tavares, Carlos Jose
1 / 2 shared
Cerqueira, Maria F.
4 / 6 shared
Mendes, Ana R.
1 / 1 shared
Tavares, Carlos J.
1 / 10 shared
Muñoz, Enrique
3 / 7 shared
González-Domínguez, Jose M.
1 / 1 shared
Rocha, Ana M.
2 / 2 shared
Samir, Zineb
2 / 3 shared
Moreira, Joaquim Agostinho
1 / 5 shared
Nioua, Yassine
2 / 3 shared
Achour, Mohammed Essaid
1 / 2 shared
Aribou, Najoia
2 / 5 shared
Silva, Jaime Oliveira Da
1 / 1 shared
Achour, Mohammed E.
1 / 1 shared
Fernandes, Lisete
1 / 5 shared
Moreira, J. Agostinho
1 / 15 shared
Melle-Franco, Manuel
1 / 7 shared
Rocha, A. M.
2 / 10 shared
Cerqueira, M. F.
1 / 41 shared
Ferreira, Fernando
1 / 6 shared
Lufrano, F.
1 / 2 shared
Brigandì, A.
1 / 1 shared
Staiti, P.
1 / 2 shared
Chart of publication period
2023
2022
2021
2018

Co-Authors (by relevance)

  • Ashrafi, Behnam
  • Martinez-Rubi, Yadienka
  • Krause, Beate
  • Kingston, Christopher
  • Jakubinek, Michael B.
  • Pötschke, Petra
  • Tavares, Carlos Jose
  • Cerqueira, Maria F.
  • Mendes, Ana R.
  • Tavares, Carlos J.
  • Muñoz, Enrique
  • González-Domínguez, Jose M.
  • Rocha, Ana M.
  • Samir, Zineb
  • Moreira, Joaquim Agostinho
  • Nioua, Yassine
  • Achour, Mohammed Essaid
  • Aribou, Najoia
  • Silva, Jaime Oliveira Da
  • Achour, Mohammed E.
  • Fernandes, Lisete
  • Moreira, J. Agostinho
  • Melle-Franco, Manuel
  • Rocha, A. M.
  • Cerqueira, M. F.
  • Ferreira, Fernando
  • Lufrano, F.
  • Brigandì, A.
  • Staiti, P.
OrganizationsLocationPeople

article

Comparative Thermoelectric Properties of Polypropylene Composites Melt-Processed Using Pyrograf® III Carbon Nanofibers

  • Krause, Beate
  • Paleo, Antonio J.
  • Tavares, Carlos Jose
  • Cerqueira, Maria F.
  • Mendes, Ana R.
  • Pötschke, Petra
  • Tavares, Carlos J.
  • Muñoz, Enrique
Abstract

<jats:p>The electrical conductivity (σ) and Seebeck coefficient (S) at temperatures from 40 °C to 100 °C of melt-processed polypropylene (PP) composites filled with 5 wt.% of industrial-grade carbon nanofibers (CNFs) is investigated. Transmission Electron Microscopy (TEM) of the two Pyrograf® III CNFs (PR 19 LHT XT and PR 24 LHT XT), used in the fabrication of the PP/CNF composites (PP/CNF 19 and PP/CNF 24), reveals that CNFs PR 24 LHT XT show smaller diameters than CNFs PR 19 LHT XT. In addition, this grade (PR 24 LHT XT) presents higher levels of graphitization as deduced by Raman spectroscopy. Despite these structural differences, both Pyrograf® III grades present similar σ (T) and S (T) dependencies, whereby the S shows negative values (n-type character). However, the σ (T) and S (T) of their derivative PP/CNF19 and PP/CNF24 composites are not analogous. In particular, the PP/CNF24 composite shows higher σ at the same content of CNFs. Thus, with an additionally slightly more negative S value, the PP/CNF24 composites present a higher power factor (PF) and figure of merit (zT) than PP/CNF19 composites at 40 °C. Moreover, while the σ (T) and S (T) of CNFs PR 19 LHT XT clearly drive the σ (T) and S (T) of its corresponding PP/CNF19 composite, the S (T) of CNFs PR 24 LHT XT does not drive the S (T) observed in their corresponding PP/CNF24 composite. Thus, it is inferred in PP/CNF24 composites an unexpected electron donation (n-type doping) from the PP to the CNFs PR 24 LHT XT, which could be activated when PP/CNF24 composites are subjected to that increase in temperature from 40 °C to 100 °C. All these findings are supported by theoretical modeling of σ (T) and S (T) with the ultimate aim of understanding the role of this particular type of commercial CNFs on the thermoelectrical properties of their PP/CNF composites.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • melt
  • composite
  • transmission electron microscopy
  • Raman spectroscopy
  • electrical conductivity