People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rodrigue, Denis
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Effect of Iron Chloride Addition on Softwood Lignin Nano-Fiber Stabilization and Carbonizationcitations
- 2024Mechanical recycling of biobased polyethylene-agave fiber compositescitations
- 2024Mechanical Decrosslinking and Reprocessing of Crosslinked Rotomolded Polypropylene Using Cryogenic-Assisted Shear Pulverization and Compression Moldingcitations
- 2024Effect of mechanical recycling on molecular structure and rheological properties of high-density polyethylene (HDPE)
- 2023Effect of Biobased SiO2 on the Morphological, Thermal, Mechanical, Rheological, and Permeability Properties of PLLA/PEG/SiO2 Biocompositescitations
- 2019Insights into interphase thickness characterization for graphene/epoxy nanocomposites: a molecular dynamics simulationcitations
- 2018Alfa fibers/clay hybrid composites based on polypropylenecitations
- 2018Morphology and Mechanical Properties of Maple Reinforced LLDPE Produced by Rotational Moulding: Effect of Fibre Content and Surface Treatmentcitations
- 2015Optimizing the Performance of Natural Fiber Reinforced Plastics Composites: Influence of Combined Optimization Paths on Microstructure and Mechanical Propertiescitations
Places of action
Organizations | Location | People |
---|
article
Effect of Biobased SiO2 on the Morphological, Thermal, Mechanical, Rheological, and Permeability Properties of PLLA/PEG/SiO2 Biocomposites
Abstract
<jats:p>Nowadays, companies and researchers are concerned about the negative consequences of using synthetic polymers and direct their efforts to create new alternatives such as biocomposites. This study investigated the effect of biobased SiO2 on the properties of poly(L-lactic acid)/SiO2 (PLLA/SiO2) and poly(L-lactic acid)/SiO2/poly(ethylene glycol) (PLLA/SiO2/PEG) composites. The SiO2 was obtained from rice husk incineration and mixed with PLLA at various concentrations (5, 10, and 15 wt.%) via melt extrusion before compression molding. Furthermore, PLLA/SiO2/PEG composites with various PEG concentrations (0, 3, 5, and 10 wt.%) with 10 wt.% SiO2 were produced. The sample morphology was studied by scanning electron microscopy (SEM) to analyze the dispersion/adhesion of SiO2 in the polymer matrix and differential scanning calorimetry (DSC) was used under isothermal and non-isothermal conditions to study the thermal properties of the samples, which was complemented by thermal stability study using thermogravimetric analysis (TGA). Rheological analysis was performed to investigate the viscoelastic behavior of the composites in the melt state. At the same time, tensile mechanical properties were obtained at room temperature to determine their properties in the solid state. DSC and X-ray diffraction analysis (XRD) were combined to determine the crystalline state of the samples. Finally, gas permeation measurements were performed using a variable pressure (constant volume) method to analyze the permeability of different gases (CO2, CH4, O2, and H2). The results showed that SiO2 decreased the PLLA chain mobility, slowing the crystallization process and lowering the gas permeability while increasing Young’s modulus, thermal stability, and viscosity. However, PEG addition increased the crystallization rate compared to the neat PLLA (+40%), and its elongation at break (+26%), leading to more flexible/ductile samples. Due to improved silica dispersion and PLLA chain mobility, the material’s viscosity and gas permeability (+50%) were also improved with PEG addition. This research uses material considered as waste to improve the properties of PLA, obtaining a material with the potential to be used for packaging.</jats:p>