Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gljušćić, Matej

  • Google
  • 1
  • 3
  • 8

University of Rijeka

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Microstructural analysis of the transverse and shear behavior of additively manufactured CFRP composite RVEs based on the phase-field fracture theory8citations

Places of action

Chart of shared publication
Franulović, Marina
1 / 4 shared
Žerovnik, Andrej
1 / 4 shared
Lanc, Domagoj
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Franulović, Marina
  • Žerovnik, Andrej
  • Lanc, Domagoj
OrganizationsLocationPeople

article

Microstructural analysis of the transverse and shear behavior of additively manufactured CFRP composite RVEs based on the phase-field fracture theory

  • Gljušćić, Matej
  • Franulović, Marina
  • Žerovnik, Andrej
  • Lanc, Domagoj
Abstract

Due to the versatility of its implementation, additive manufacturing has become the enabling technology in the research and development of innovative engineering components. However, many experimental studies have shown inconsistent results and have highlighted multiple defects in the materials’ structure thus bringing the adoption of the additive manufacturing method in practical engineering applications into question, yet limited work has been carried out in the material modelling of such cases. In order to account for the effects of the accumulated defects, a micromechanical analysis based on the representative volume element has been considered, and phase-field modelling has been adopted to model the effects of inter-fiber cracking. The 3D models of representative volume elements were developed in the Abaqus environment based on the fiber dimensions and content acquired using machine learning algorithms, while fulfilling both geometric and material periodicity. Furthermore, the periodic boundary conditions were assumed for each of the representative volume elements in transversal and in-plane shear test cases,. The analysis was conducted by adopting an open-source UMAT subroutine, where the phase-field balance equation was related to the readily available heat transfer equation from Abaqus, avoiding the necessity for a dedicated user-defined element thus enabling the adoption of the standard elements and features available in the Abaqus CAE environment. The model was tested on three representative volume element sizes and the interface properties were calibrated according to the experimentally acquired results for continuous carbon-fiber-reinforced composites subjected to transverse tensile and shear loads. This investigation confirmed the consistency between the experimental results and the numerical solutions acquired using a phase-field fracture approach for the transverse tensile and shear behavior of additively manufactured continuous-fiber-reinforced composites, while showing dependence on the ...

Topics
  • Carbon
  • phase
  • theory
  • shear test
  • defect
  • additive manufacturing
  • fiber-reinforced composite
  • machine learning