People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pletz, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Comparing crack density and dissipated energy as measures for off-axis damage in composite laminatescitations
- 2022Combined Crack Initiation and Crack Growth Model for Multi-Layer Polymer Materialscitations
- 2022Efficient prediction of crack initiation from arbitrary 2D notchescitations
- 2022Improved concept for iterative crack propagation using configurational forces for targeted angle correctioncitations
- 2022Efficient Finite Element Modeling of Steel Cables in Reinforced Rubbercitations
- 2021CrackDect: Detecting crack densities in images of fiber-reinforced polymerscitations
- 2019Constitutive modeling of anisotropic plasticity with application to fiber-reinforced compositescitations
- 2019Investigation of deformation mechanisms in manganese steel crossings using FE modelscitations
- 2017Permeability Customisation through Preform Manipulation Utilising 3D-Printing Technology
- 2016A finite element model to simulate the physical mechanisms of wear and crack initiation in wheel/rail contactcitations
- 2016Residual lifetime determination of low temperature co-fired ceramics
- 2014Rolling Contact Fatigue of Three Crossing Nose Materials—Multiscale FE Approachcitations
Places of action
Organizations | Location | People |
---|
article
Efficient Finite Element Modeling of Steel Cables in Reinforced Rubber
Abstract
Spiral steel cables feature complex deformation behavior due to their wound geometry. In applications where the cables are used to reinforce rubber components, modeling the cables is not trivial, because the cable’s outer surface must be connected to the surrounding rubber material. There are several options for modeling steel cables using beam and/or solid elements for the cable. So far, no study that lists and evaluates the performance of such approaches can be found in the literature. This work investigates such modeling options for a simple seven-wire strand that is regarded as a cable. The setup, parameter calibration, and implementation of the approaches are described. The accuracy of the obtained deformation behavior is assessed for a three-cable specimen using a reference model that features the full geometry of the wires in the three cables. It is shown that a beam approach with anisotropic beam material gives the most accurate stiffness results. The results of the three-cable specimen model indicate that such a complex cable model is quite relevant for the specimen’s deformation. However, there is no single approach that is well suited for all applications. The beam with anisotropic material behavior is well suited if the necessary simplifications in modeling the cable–rubber interface can be accepted. The present work thus provides a guide not only for calibrating but also for selecting the cable-modeling approach. It is shown how such modeling approaches can be used in commercial FE software for applications such as conveyor belts.