People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salasinska, Kamila
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022The Effect of Manufacture Process on Mechanical Properties and Burning Behavior of Epoxy-Based Hybrid Compositescitations
- 2021Comparative Study of the Reinforcement Type Effect on the Thermomechanical Properties and Burning of Epoxy-Based Compositescitations
- 2021Moisture Resistance, Thermal Stability and Fire Behavior of Unsaturated Polyester Resin Modified with L-histidinium Dihydrogen Phosphate-Phosphoric Acidcitations
- 2020The Effect of Poly(Vinyl Chloride) Powder Addition on the Thermomechanical Properties of Epoxy Composites Reinforced with Basalt Fibercitations
- 2020The Effect of Antibacterial Particle Incorporation on the Mechanical Properties, Biodegradability, and Biocompatibility of PLA and PHBV Compositescitations
- 2020The influence of oil content within lignocellulosic filler on thermal degradation kinetics and flammability of polylactide composites modified with linseed cakecitations
- 2020Rigid polyurethane foams modified with thermoset polyester-glass fiber composite wastecitations
- 2019Mechanical, fire, and smoke behaviour of hybrid composites based on polyamide 6 with basalt/carbon fibrescitations
- 2017Evaluation of highly filled epoxy composites modified with walnut shell waste fillercitations
- 2016Combustibility studies of unsaturated polyester resins modified by nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
Comparative Study of the Reinforcement Type Effect on the Thermomechanical Properties and Burning of Epoxy-Based Composites
Abstract
<jats:p>Aramid (AF), glass (GF), carbon (CF), basalt (BF), and flax (FF) fibers in the form of fabrics were used to produce the composites by hand-lay up method. The use of fabrics of similar grammage for composites’ manufacturing allowed for a comprehensive comparison of the properties of the final products. The most important task was to prepare a complex setup of mechanical and thermomechanical properties, supplemented by fire behavior analysis, and discuss both characteristics in their application range. The mechanical properties were investigated using tensile and flexural tests, as well as impact strength measurement. The investigation was improved by assessing thermomechanical properties under dynamic deformation conditions (dynamic mechanical–thermal analysis (DMTA)). All products were subjected to a fire test carried out using a cone calorimeter (CC).</jats:p>