Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dujearic-Stephane, Kouao

  • Google
  • 1
  • 6
  • 71

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability71citations

Places of action

Chart of shared publication
Gupta, Meenal
1 / 1 shared
Bocchetta, Patrizia
1 / 14 shared
Kumar, Yogesh
1 / 6 shared
Pandit, Soumya
1 / 8 shared
Sharma, Vijay Kumar
1 / 3 shared
Kumar, Ashwani
1 / 8 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Gupta, Meenal
  • Bocchetta, Patrizia
  • Kumar, Yogesh
  • Pandit, Soumya
  • Sharma, Vijay Kumar
  • Kumar, Ashwani
OrganizationsLocationPeople

article

The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability

  • Gupta, Meenal
  • Dujearic-Stephane, Kouao
  • Bocchetta, Patrizia
  • Kumar, Yogesh
  • Pandit, Soumya
  • Sharma, Vijay Kumar
  • Kumar, Ashwani
Abstract

<jats:p>In this review, the efforts done by different research groups to enhance the performance of the electric double-layer capacitors (EDLCs), regarding the effect of the modification of activated carbon structures on the electrochemical properties, are summarized. Activated carbon materials with various porous textures, surface chemistry, and microstructure have been synthesized using several different techniques by different researchers. Micro-, meso-, and macroporous textures can be obtained through the activation/carbonization process using various activating agents. The surface chemistry of activated carbon materials can be modified via: (i) the carbonization of heteroatom-enriched compounds, (ii) post-treatment of carbon materials with reactive heteroatom sources, and (iii) activated carbon combined both with metal oxide materials dan conducting polymers to obtain composites. Intending to improve the EDLCs performance, the introduction of heteroatoms into an activated carbon matrix and composited activated carbon with either metal oxide materials or conducting polymers introduced a pseudo-capacitance effect, which is an additional contribution to the dominant double-layer capacitance. Such tricks offer high capacitance due to the presence of both electrical double layer charge storage mechanism and faradic charge transfer. The surface modification by attaching suitable heteroatoms such as phosphorus species increases the cell operating voltage, thereby improving the cell performance. To establish a detailed understanding of how one can modify the activated carbon structure regarding its porous textures, the surface chemistry, the wettability, and microstructure enable to enhance the performance of the EDLCs is discussed here in detail. This review discusses the basic key parameters which are considered to evaluate the performance of EDLCs such as cell capacitance, operating voltage, equivalent series resistance, power density, and energy density, and how these are affected by the modification of the activated carbon framework.</jats:p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • surface
  • compound
  • polymer
  • Carbon
  • energy density
  • reactive
  • composite
  • texture
  • activation
  • Phosphorus