Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chiochetta, Bianca Da Cruz

  • Google
  • 1
  • 4
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Fire Protective Surface Coating Containing Nanoparticles for Marine Composite Laminates14citations

Places of action

Chart of shared publication
Perrin, Didier
1 / 17 shared
Ferry, Laurent
1 / 29 shared
Ienny, Patrick
1 / 45 shared
Floch, Léa
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Perrin, Didier
  • Ferry, Laurent
  • Ienny, Patrick
  • Floch, Léa
OrganizationsLocationPeople

article

Fire Protective Surface Coating Containing Nanoparticles for Marine Composite Laminates

  • Chiochetta, Bianca Da Cruz
  • Perrin, Didier
  • Ferry, Laurent
  • Ienny, Patrick
  • Floch, Léa
Abstract

A poly(vinyl alcohol) (PVA)-based coating containing ammonium polyphosphate (APP) and sepiolite nanofillers (SP) and supported by a glass fabric was developed to fire-protect a glass-fiber-reinforced unsaturated-polyester-based (UP) polymer (GFRP). The fire behavior and thermal stability of the PVA coatings were characterized using thermogravimetric analysis (TGA) and a cone calorimeter. The coatings’ residues were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results from the cone calorimeter showed that the addition of sepiolite significantly improves the flame retardancy of PVA/APP/SP coatings. The addition of both additives promoted the formation of a cohesive layer composed of a silico-phosphate structure resulting from the reactivity between APP and SP. The fire resistance of the composite laminate protected by PVA coatings was evaluated using a cone calorimeter by measuring the temperature of the back face. Photogrammetry was used to assess the swelling of residues after heat exposure. The interaction between APP and SP in PVA coating leads to the formation of an effective thermal barrier layer. The presence of SP reduces the layer expansion but greatly decreases the backside temperature during the initial period of exposure. The effect was assigned to high thermal stability of the layer and its ability to dissipate heat by re-radiation.

Topics
  • nanoparticle
  • surface
  • polymer
  • scanning electron microscopy
  • x-ray diffraction
  • glass
  • glass
  • composite
  • thermogravimetry
  • alcohol