People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Staudinger, Ulrike
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Influence of CNT Length on Dispersion, Localization, and Electrical Percolation in a Styrene-Butadiene-Based Star Block Copolymercitations
- 2020Influence of Controlled Epoxidation of an Asymmetric Styrene/Butadiene Star Block Copolymer on Structural and Mechanical Properties
- 2020Influence of Controlled Epoxidation of an Asymmetric Styrene/Butadiene Star Block Copolymer on Structural and Mechanical Propertiescitations
- 2020Dispersion and Localization Behavior of Modified MWCNTs in Immiscible Polymer Blends of Polystyrene and Polybutadiene and in Corresponding Nanostructured Block Copolymerscitations
- 2019Nanofiller Dispersion, Morphology, Mechanical Behavior, and Electrical Properties of Nanostructured Styrene-Butadiene-Based Triblock Copolymer/CNT Compositescitations
- 2019Nanofiller dispersion, morphology, mechanical behavior, and electrical properties of nanostructured styrene-butadiene-based triblock copolymer/CNT composites
- 2014Dispersability of multiwalled carbon nanotubes in polycarbonate-chloroform solutionscitations
Places of action
Organizations | Location | People |
---|
article
Dispersion and Localization Behavior of Modified MWCNTs in Immiscible Polymer Blends of Polystyrene and Polybutadiene and in Corresponding Nanostructured Block Copolymers
Abstract
<jats:p>The influence of carbon nanotube (CNT) modification on the dispersion and localization behavior of the CNTs in immiscible blends of polystyrene (PS) and polybutadiene (PB), and in the nanostructured morphology of a star-shaped styrene-butadiene based block copolymer (BCP), was studied to form a basis for the development of functional materials with defined electrical property profiles. Unmodified multi-walled CNTs (MWCNTs) were dispersed in PS, PB and PS/PB blends by solution mixing. Additionally, MWCNTs were functionalized with n-octadecylamine and monoamino-terminated polystyrene to increase the compatibility between the homopolymers and the nanofiller. The MWCNT dispersion and the blend morphology formation were studied using transmission light microscopy and scanning electron microscopy. The MWCNT dispersion could be significantly improved by the modification of the MWCNTs. All MWCNT types were found to preferably localize in the PS phase of the PS/PB blend. However, only blends containing unmodified MWCNTs were electrically conductive. Similar effects were found in BCP/MWCNT composites. The BCP was already electrically conductive with a filler content of 0.1 wt % of unmodified MWCNTs. The stress–strain behavior of the BCP was slightly influenced by MWCNT addition and CNT modification. The dispersability of MWCNTs was significantly improved by CNT functionalization, which indicates a strong polymer-filler interaction.</jats:p>