People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bajpai, Ankur
General Electric (Denmark)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021Studies on the Modification of Commercial Bisphenol-A-Based Epoxy Resin Using Different Multifunctional Epoxy Systemscitations
- 2020Tribo-mechanical characterization of carbon fiber-reinforced cyanate ester resins modified with fillers identification of communication signals using learning approaches for cognitive radio applicationscitations
- 2019Effect of Different Types of Block Copolymers on Morphology, Mechanical Properties, and Fracture Mechanisms of Bisphenol-F Based Epoxy Systemcitations
- 2019The Effect of Hybridized Carbon Nanotubes, Silica Nanoparticles, and Core-Shell Rubber on Tensile, Fracture Mechanics and Electrical Properties of Epoxy Nanocompositescitations
- 2019Tensile Testing of Epoxy-Based Thermoset System Prepared by Different Methodscitations
- 2018Modification of Epoxy Systems for Mechanical Performance Improvement
- 2018Tensile Properties, Fracture Mechanics Properties and Toughening Mechanisms of Epoxy Systems Modified with Soft Block Copolymers, Rigid TiO2 Nanoparticles and Their Hybridscitations
Places of action
Organizations | Location | People |
---|
article
Tensile Properties, Fracture Mechanics Properties and Toughening Mechanisms of Epoxy Systems Modified with Soft Block Copolymers, Rigid TiO2 Nanoparticles and Their Hybrids
Abstract
<jats:p>The effect of the hybridization of a triblock copolymer and a rigid TiO2 nanofiller on the tensile, fracture mechanics and thermo-mechanical properties of bisphenol F based epoxy resin were studied. The self-assembling block copolymer, constituted of a center block of poly (butyl acrylate) and two side blocks of poly (methyl) methacrylate-co-polar co-monomer was used as a soft filler, and TiO2 nanoparticles were employed as rigid modifiers. Toughening solely by block copolymers (BCP’s) led to the highest fracture toughness and fracture energy in the study, KIc = 2.18 MPa·m1/2 and GIc = 1.58 kJ/m2. This corresponds to a 4- and 16-fold improvement, respectively, over the neat reference epoxy system. However, a reduction of 15% of the tensile strength was observed. The hybrid nanocomposites, containing the same absolute amounts of modifiers, showed a maximum value of KIc = 1.72 MPa·m1/2 and GIc = 0.90 kJ/m2. Yet, only a minor reduction of 4% of the tensile strength was observed. The fracture toughness and fracture energy were co-related to the plastic zone size for all the modified systems. Finally, the analysis of the fracture surfaces revealed the toughening mechanisms of the nanocomposites.</jats:p>