Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, Ping

  • Google
  • 3
  • 12
  • 115

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Stereolithography vs. Direct Light Processing for Rapid Manufacturing of Complete Denture Bases: An In Vitro Accuracy Analysis.90citations
  • 2021Stereolithography vs. Direct Light Processing for Rapid Manufacturing of Complete Denture Bases: An In Vitro Accuracy Analysiscitations
  • 2020Hierarchical Fe-modified MgAl2O4 as Ni-catalyst support for methane dry reforming25citations

Places of action

Chart of shared publication
Beuer, F.
1 / 8 shared
Kraemer Fernandez, P.
1 / 1 shared
Spintzyk, Sebastian
2 / 3 shared
Schmidt, Franziska
2 / 13 shared
Unkovskiy, Alexey
2 / 2 shared
Kraemer Fernandez, Pablo
1 / 1 shared
Beuer, Florian
1 / 13 shared
Galvita, Vladimir
1 / 26 shared
Detavernier, Christophe
1 / 72 shared
Poelman, Hilde
1 / 26 shared
Marin, Guy
1 / 29 shared
Wang, Hao
1 / 15 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Beuer, F.
  • Kraemer Fernandez, P.
  • Spintzyk, Sebastian
  • Schmidt, Franziska
  • Unkovskiy, Alexey
  • Kraemer Fernandez, Pablo
  • Beuer, Florian
  • Galvita, Vladimir
  • Detavernier, Christophe
  • Poelman, Hilde
  • Marin, Guy
  • Wang, Hao
OrganizationsLocationPeople

article

Stereolithography vs. Direct Light Processing for Rapid Manufacturing of Complete Denture Bases: An In Vitro Accuracy Analysis.

  • Beuer, F.
  • Kraemer Fernandez, P.
  • Li, Ping
  • Spintzyk, Sebastian
  • Schmidt, Franziska
  • Unkovskiy, Alexey
Abstract

The topical literature lacks any comparison between stereolithography (SLA) and direct light processing (DLP) printing methods with regard to the accuracy of complete denture base fabrication, thereby utilizing materials certified for this purpose. In order to investigate this aspect, 15 denture bases were printed with SLA and DLP methods using three build angles: 0°, 45° and 90°. The dentures were digitalized using a laboratory scanner (D2000, 3Shape) and analyzed in analyzing software (Geomagic Control X, 3D systems). Differences between 3D datasets were measured using the root mean square (RMS) value for trueness and precision and mean and maximum deviations were obtained for each denture base. The data were statistically analyzed using two-way ANOVA and Tukey's multiple comparison test. A heat map was generated to display the locations of the deviations within the intaglio surface. The overall tendency indicated that SLA denture bases had significantly higher trueness for most build angles compared to DLP ( p < 0.001). The 90° build angle may provide the best trueness for both SLA and DLP. With regard to precision, statistically significant differences were found in the build angles only. Higher precision was revealed in the DLP angle of 0° in comparison to the 45° and 90° angles.

Topics
  • surface