Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schlabach, Sabine

  • Google
  • 6
  • 39
  • 216

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Using ELN Functionality of Kadi4Mat (KadiWeb) in a Materials Science Case Study of a User Facilitycitations
  • 2021Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten leadcitations
  • 2019Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta-Nb-Mo-Cr-Ti-Al84citations
  • 2017Combinatorial exploration of the high entropy alloy system Co-Cr-Fe-Mn-Ni54citations
  • 2014Microwave plasma synthesis of materials. From physics and chemistry to nanoparticles: A materials scientist's viewpoint65citations
  • 2014Electrochemical performance of tin-based nano-composite electrodes using a vinylene carbonate-containing electrolyte for Li-ion cells13citations

Places of action

Chart of shared publication
Selzer, Michael
1 / 186 shared
Wild, Johannes
1 / 1 shared
Petkau, Oliver
1 / 1 shared
Lang, Fabian
1 / 1 shared
Szabó, Dorothée Vinga
1 / 3 shared
Heinzel, Annette
1 / 4 shared
Fetzer, Renate
1 / 9 shared
Jianu, Adrian
1 / 3 shared
Weisenburger, Alfons
1 / 5 shared
Shi, Hao
1 / 6 shared
Tang, Chongchong
1 / 15 shared
Müller, Georg
1 / 4 shared
Heilmaier, Martin
2 / 247 shared
Kauffmann, A.
1 / 67 shared
Liebscher, C. H.
1 / 6 shared
Heilmaier, M.
1 / 44 shared
Kauffmann-Weiss, S.
1 / 9 shared
Szabó, D. V.
2 / 6 shared
Harding, I.
1 / 1 shared
Müller, F.
1 / 11 shared
Gorr, B.
1 / 30 shared
Kumar, K. S.
1 / 10 shared
Boll, T.
1 / 19 shared
Schlabach, S.
1 / 19 shared
Christ, H.-J.
1 / 40 shared
Chen, H.
1 / 48 shared
Seils, S.
1 / 13 shared
Seifert, Hans-Jürgen
1 / 3 shared
Chen, Hans
1 / 7 shared
Gorr, Bronislava
1 / 17 shared
Ulrich, Sven
1 / 23 shared
Leiste, Harald
1 / 9 shared
Kauffmann, Alexander
1 / 53 shared
Seils, Sascha
1 / 10 shared
Stüber, Michael
1 / 17 shared
Hanemann, T.
1 / 44 shared
Kilibarda, G.
1 / 3 shared
Winkler, V.
1 / 3 shared
Bruns, M.
1 / 21 shared
Chart of publication period
2024
2021
2019
2017
2014

Co-Authors (by relevance)

  • Selzer, Michael
  • Wild, Johannes
  • Petkau, Oliver
  • Lang, Fabian
  • Szabó, Dorothée Vinga
  • Heinzel, Annette
  • Fetzer, Renate
  • Jianu, Adrian
  • Weisenburger, Alfons
  • Shi, Hao
  • Tang, Chongchong
  • Müller, Georg
  • Heilmaier, Martin
  • Kauffmann, A.
  • Liebscher, C. H.
  • Heilmaier, M.
  • Kauffmann-Weiss, S.
  • Szabó, D. V.
  • Harding, I.
  • Müller, F.
  • Gorr, B.
  • Kumar, K. S.
  • Boll, T.
  • Schlabach, S.
  • Christ, H.-J.
  • Chen, H.
  • Seils, S.
  • Seifert, Hans-Jürgen
  • Chen, Hans
  • Gorr, Bronislava
  • Ulrich, Sven
  • Leiste, Harald
  • Kauffmann, Alexander
  • Seils, Sascha
  • Stüber, Michael
  • Hanemann, T.
  • Kilibarda, G.
  • Winkler, V.
  • Bruns, M.
OrganizationsLocationPeople

article

Microwave plasma synthesis of materials. From physics and chemistry to nanoparticles: A materials scientist's viewpoint

  • Schlabach, Sabine
Abstract

In this review, microwave plasma gas-phase synthesis of inorganic materials and material groups is discussed from the application-oriented perspective of a materials scientist: why and how microwave plasmas are applied for the synthesis of materials? First, key players in this research field will be identified, and a brief overview on publication history on this topic is given. The fundamental basics, necessary to understand the processes ongoing in particle synthesis—one of the main applications of microwave plasma processes—and the influence of the relevant experimental parameters on the resulting particles and their properties will be addressed. The benefit of using microwave plasma instead of conventional gas phase processes with respect to chemical reactivity and crystallite nucleation will be reviewed. The criteria, how to choose an appropriate precursor to synthesize a specific material with an intended application is discussed. A tabular overview on all type of materials synthesized in microwave plasmas and other plasma methods will be given, including relevant citations. Finally, property examples of three groups of nanomaterials synthesized with microwave plasma methods, bare Fe2O3 nanoparticles, different core/shell ceramic/organic shell nanoparticles, and Sn-based nanocomposites, will be described exemplarily, comprising perspectives of applications.

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • ceramic
  • gas phase