Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ioannou, Anna

  • Google
  • 2
  • 14
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Modification of Graphite/SiO2 Film Electrodes with Hybrid Organic–Inorganic Perovskites for the Detection of Vasoconstrictor Bisartan 4-Butyl-Ν,Ν-bis{[2-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium Bromidecitations
  • 2022Methylammonium lead bromide perovskite nano-crystals grown in a poly[styrene-co-(2-(dimethylamino)ethyl methacrylate)] matrix immobilized on exfoliated graphene nano-sheets4citations

Places of action

Chart of shared publication
Topoglidis, Emmanuel
1 / 1 shared
Spyrou, Alexandros
1 / 1 shared
Mandrapylia, Aggeliki
1 / 1 shared
Kelaidonis, Konstantinos
1 / 1 shared
Papathanidis, Georgios
1 / 1 shared
Matsoukas, John
1 / 1 shared
Koutselas, Ioannis
1 / 1 shared
Mousdis, Georgios
1 / 1 shared
Arenal, Raúl
1 / 35 shared
Stergiou, Anastasios
1 / 2 shared
Pispas, Stergios
1 / 7 shared
Tagmatarchis, Nikos
1 / 6 shared
Sideri, Ioanna K.
1 / 1 shared
Kafetzi, Martha
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Topoglidis, Emmanuel
  • Spyrou, Alexandros
  • Mandrapylia, Aggeliki
  • Kelaidonis, Konstantinos
  • Papathanidis, Georgios
  • Matsoukas, John
  • Koutselas, Ioannis
  • Mousdis, Georgios
  • Arenal, Raúl
  • Stergiou, Anastasios
  • Pispas, Stergios
  • Tagmatarchis, Nikos
  • Sideri, Ioanna K.
  • Kafetzi, Martha
OrganizationsLocationPeople

article

Modification of Graphite/SiO2 Film Electrodes with Hybrid Organic–Inorganic Perovskites for the Detection of Vasoconstrictor Bisartan 4-Butyl-Ν,Ν-bis{[2-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium Bromide

  • Topoglidis, Emmanuel
  • Spyrou, Alexandros
  • Mandrapylia, Aggeliki
  • Kelaidonis, Konstantinos
  • Papathanidis, Georgios
  • Matsoukas, John
  • Koutselas, Ioannis
  • Ioannou, Anna
Abstract

<jats:p>In the present work, a hybrid organic–inorganic semiconductor (HOIS) has been used to modify the surface of a graphite paste/silica (G–SiO2) film electrode on a conducting glass substrate to fabricate a promising, sensitive voltammetric sensor for the vasoconstrictor bisartan BV6, which could possibly treat hypertension and COVID-19. The HOIS exhibits exceptional optoelectronic properties with promising applications not only in light-emitting diodes, lasers, or photovoltaics but also for the development of voltammetric sensors due to the ability of the immobilized HOIS lattice to interact with ions. This study involves the synthesis and characterization of an HOIS and its attachment on the surface of a G–SiO2 film electrode in order to develop a nanocomposite, simple, sensitive with a fast-response, low-cost voltammetric sensor for BV6. The modified HOIS electrode was characterized using X-ray diffraction, scanning electron microscopy, and optical and photoluminescence spectroscopy, and its electrochemical behavior was examined using cyclic voltammetry. Under optimal conditions, the modified G–SiO2 film electrode exhibited a higher electrocatalytic activity towards the oxidation of BV6 compared to a bare graphite paste electrode. The results showed that the peak current was proportional to BV6 concentration with a linear response range from 0 to 65 × 10−6 (coefficient of determination, 0.9767) and with a low detection limit of 1.5 × 10−6 M (S/N = 3), estimated based on the area under a voltammogram, while it was 3.5 × 10−6 for peak-based analysis. The sensor demonstrated good stability and reproducibility and was found to be appropriate for the determination of drug compounds such as BV6.</jats:p>

Topics
  • nanocomposite
  • perovskite
  • surface
  • compound
  • photoluminescence
  • scanning electron microscopy
  • x-ray diffraction
  • glass
  • semiconductor
  • glass
  • cyclic voltammetry
  • spectroscopy