Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kort, Laura De

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Combined Effect of Halogenation and SiO2 Addition on the Li-Ion Conductivity of LiBH4citations

Places of action

Chart of shared publication
Jongh, Petra De
1 / 2 shared
Ngene, Peter
1 / 18 shared
Baricco, Marcello
1 / 39 shared
Gulino, Valerio
1 / 9 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Jongh, Petra De
  • Ngene, Peter
  • Baricco, Marcello
  • Gulino, Valerio
OrganizationsLocationPeople

article

Combined Effect of Halogenation and SiO2 Addition on the Li-Ion Conductivity of LiBH4

  • Jongh, Petra De
  • Kort, Laura De
  • Ngene, Peter
  • Baricco, Marcello
  • Gulino, Valerio
Abstract

<jats:p>In this work, the combined effects of anion substitution (with Br− and I−) and SiO2 addition on the Li-ion conductivity in LiBH4 have been investigated. Hexagonal solid solutions with different compositions, h-Li(BH4)1−α(X)α (X = Br, I), were prepared by ball milling and fully characterized. The most conductive composition for each system was then mixed with different amounts of SiO2 nanoparticles. If the amount of added complex hydride fully fills the original pore volume of the added silica, in both LiBH4-LiBr/SiO2 and LiBH4-LiI/SiO2 systems, the Li-ion conductivity was further increased compared to the h-Li(BH4)1−α(X)α solid solutions alone. The use of LiBH4-LiX instead of LiBH4 in composites with SiO2 enabled the development of an optimal conductive pathway for the Li ions, since the h-Li(BH4)1−α(X)α possesses a higher conductivity than LiBH4. In fact, the Li conductivity of the silica containing h-Li(BH4)1−α(X)α is higher than the maximum reached in LiBH4-SiO2 alone. Therefore, a synergetic effect of combining halogenation and interface engineering is demonstrated in this work.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • pore
  • milling
  • composite
  • ball milling
  • ball milling