People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abdo, Hany S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Investigating the Mechanical Properties of Annealed 3D-Printed PLA–Date Pits Compositecitations
- 2023Adaptive Neuro-Fuzzy-Based Models for Predicting the Tribological Properties of 3D-Printed PLA Green Composites Used for Biomedical Applicationscitations
- 2023Investigation of the Mechanical and Tribological Behavior of Epoxy-Based Hybrid Compositecitations
- 2023Hydroxyapatite–Clay Composite for Bone Tissue Engineering: Effective Utilization of Prawn Exoskeleton Biowastecitations
- 2023Ecofriendly Biochar as a Low-Cost Solid Lubricating Filler for LDPE Sustainable Biocomposites: Thermal, Mechanical, and Tribological Characterizationcitations
- 2023Casting light on the tribological properties of paraffin-based HDPE enriched with graphene nano-additives: an experimental investigationcitations
- 2023Effect of Synthesized Titanium Dioxide Nanofibers Weight Fraction on the Tribological Characteristics of Magnesium Nanocomposites Used in Biomedical Applicationscitations
- 2022Mechanical Alloying of Ball-Milled Cu–Ti–B Elemental Powder with the In Situ Formation of Titanium Diboridecitations
- 2022Comparative Study into Microstructural and Mechanical Characterization of HVOF-WC-Based Coatingscitations
- 2022Study on the Microstructure of Vanadium-Modified Tungsten High-Speed Steel-Coded SAE-AISI T1 Steelcitations
- 2021Electrochemical Corrosion Behavior of Laser Welded 2205 Duplex Stainless-Steel in Artificial Seawater Environment under Different Acidity and Alkalinity Conditionscitations
- 2021Mitigating Corrosion Effects of Ti-48Al-2Cr-2Nb Alloy Fabricated via Electron Beam Melting (EBM) Technique by Regulating the Immersion Conditionscitations
- 2021Electrochemical Behavior of Inductively Sintered Al/TiO2 Nanocomposites Reinforced by Electrospun Ceramic Nanofiberscitations
- 2020The Cyclic Oxidation and Hardness Characteristics of Thermally Exposed Titanium Prepared by Inductive Sintering-Assisted Powder Metallurgycitations
- 2020Influence of Extrusion Temperature on the Corrosion Behavior in Sodium Chloride Solution of Solid State Recycled Aluminum Alloy 6061 Chipscitations
- 2020Regulating Mechanical Properties of Al/SiC by Utilizing Different Ball Milling Speedscitations
- 2017Effect of Nickel Content on the Corrosion Resistance of Iron-Nickel Alloys in Concentrated Hydrochloric Acid Pickling Solutionscitations
- 2015Corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquidscitations
Places of action
Organizations | Location | People |
---|
article
Hydroxyapatite–Clay Composite for Bone Tissue Engineering: Effective Utilization of Prawn Exoskeleton Biowaste
Abstract
<jats:p>Hydroxyapatite (HA, Ca10(PO4)6(OH)2)-based porous scaffolds have been widely investigated in the last three decades. HA, with excellent biocompatibility and osteoconductivity, has made this material widely used in bone tissue engineering. To improve the mechano-biological properties of HA, the addition of clay to develop HA-based composite scaffolds has gained considerable interest from researchers. In this study, a cost-effective method to prepare a HA–clay composite was demonstrated via the mechanical mixing method, wherein kaolin was used because of its biocompatibility. Prawn (Fenneropenaeus indicus) exoskeleton biowaste was utilized as a raw source to synthesize pure HA using wet chemical synthesis. HA–clay composites were prepared by reinforcing HA with 10, 20, and 30 wt.% of kaolin via the mechanical mixing method. A series of characterization tools such as XRD, FTIR, Raman, and FESEM analysis confirmed the phases and characteristic structural and vibrations bonds along with the morphology of sintered bare HA, HA–kaolin clay composite, and kaolin alone, respectively. The HA–clay composite pellets, uniaxially pressed and sintered at 1100 °C for 2 h, were subjected to a compression test, and an enhancement in mechanical and physical properties, with the highest compressive strength of 35 MPa and a retained open porosity of 33%, was achieved in the HA–kaolin (20 wt.%) clay composite, in comparison with bare HA. The addition of 20% kaolin to HA enhanced its compressive strength by 33.7% and increased its open porosity by 19% when compared with bare HA. The reinforcement of HA with different amounts (10, 20, 30 wt.%) of kaolin could open up a new direction of preparing biocomposite scaffolds with enhanced mechanical properties, improved wear, and better cell proliferation in the field of bone tissue engineering.</jats:p>