Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stoica, Alexandru-Constantin

  • Google
  • 2
  • 11
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023A Manganese(II) 3D Metal–Organic Framework with Siloxane-Spaced Dicarboxylic Ligand: Synthesis, Structure, and Properties2citations
  • 2023Fully carboxy-functionalized polyhedral silsesquioxanes as polar fillers to enhance the performance of dielectric silicone elastomers5citations

Places of action

Chart of shared publication
Cazacu, Maria
2 / 10 shared
Damoc, Madalin
1 / 2 shared
Novitchi, Ghenadie
1 / 6 shared
Dascalu, Mihaela
2 / 9 shared
Shova, Sergiu
1 / 9 shared
Bele, Adrian
1 / 5 shared
Skov, Anne Ladegaard
1 / 298 shared
Vasiliu, Ana-Lavinia
1 / 1 shared
Racles, Carmen
1 / 7 shared
Ionita, Daniela
1 / 3 shared
Yu, Liyun
1 / 71 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Cazacu, Maria
  • Damoc, Madalin
  • Novitchi, Ghenadie
  • Dascalu, Mihaela
  • Shova, Sergiu
  • Bele, Adrian
  • Skov, Anne Ladegaard
  • Vasiliu, Ana-Lavinia
  • Racles, Carmen
  • Ionita, Daniela
  • Yu, Liyun
OrganizationsLocationPeople

article

A Manganese(II) 3D Metal–Organic Framework with Siloxane-Spaced Dicarboxylic Ligand: Synthesis, Structure, and Properties

  • Cazacu, Maria
  • Stoica, Alexandru-Constantin
  • Damoc, Madalin
  • Novitchi, Ghenadie
  • Dascalu, Mihaela
  • Shova, Sergiu
Abstract

<jats:p>A new metal–organic framework {[Mn4(Cx)3(etdipy)5]·2ClO4}n (1) was prepared via the complexation of manganese ion from a Mn(ClO4)2 source with 1,3-bis(carboxypropyl)tetramethyldisiloxane (Cx) and 1,2-di(4-pyridyl)ethylene (etdipy) in the presence of 2,4-lutidine as a deprotonating agent. The single-crystal X-ray diffraction analysis revealed a dense 3D framework structure. The presence in the structure of flexible tetramethyldisiloxane moieties, which tend to orient themselves at the interface with the air, gives the compound a highly hydrophobic character, as indicated by the result of the water vapor sorption analysis in the dynamic regime, as well as the shape and stability of the water droplet on the crystalline mass of the compound. The compound is an electrical insulator, and due to its hydrophobicity, this characteristic is unaffected by environmental dampness. The thermal analysis indicated thermal stability up to about 300 °C and an unusual thermal transition for an MOF structure, more precisely a glass transition at 24 °C, the latter also being attributed to the flexible segments in the structure. The magnetic studies showed dominant antiferromagnetic interactions along the metal ion chain in compound 1.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • x-ray diffraction
  • glass
  • glass
  • thermal analysis
  • Manganese