People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Niaura, Gediminas
Center for Physical Sciences and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Investigation of Hydrogen and Oxygen Evolution on Cobalt-Nanoparticles-Supported Graphitic Carbon Nitridecitations
- 2023Black Liquor and Wood Char-Derived Nitrogen-Doped Carbon Materials for Supercapacitorscitations
- 2022Wet Synthesis of Graphene-Polypyrrole Nanocomposites via Graphite Intercalation Compoundscitations
- 2022Design and Characterization of Nanostructured Titanium Monoxide Films Decorated with Polyaniline Speciescitations
- 2022Green Removal of DUV-Polarity-Modified PMMA for Wet Transfer of CVD Graphenecitations
- 2022Structural Control and Electrical Behavior of Thermally Reduced Graphene Oxide Samples Assisted with Malonic Acid and Phosphorus Pentoxidecitations
- 2022Synthesis and Characterization of Graphite Intercalation Compounds with Sulfuric Acidcitations
- 2022The direct growth of planar and vertical graphene on Si(100) <i>via</i> microwave plasma chemical vapor deposition: synthesis conditions effectscitations
- 2018Wood-Based Carbon Materials Modified with Cobalt Nanoparticles As Catalysts for Oxygen Reduction and Hydrogen Oxidation
- 2017AlAs as a Bi blocking barrier in GaAsBi multi-quantum wells: Structural analysiscitations
Places of action
Organizations | Location | People |
---|
article
Structural Control and Electrical Behavior of Thermally Reduced Graphene Oxide Samples Assisted with Malonic Acid and Phosphorus Pentoxide
Abstract
<jats:p>We present a detailed study of the structural and electrical changes occurring in two graphene oxide (GO) samples during thermal reduction in the presence of malonic acid (MA) (5 and 10 wt%) and P2O5 additives. The morphology and de-oxidation efficiency of reduced GO (rGO) samples are characterized by Fourier transform infrared, X-ray photoelectron, energy-dispersive X-ray, Raman spectroscopies, transmission electron and scanning electron microscopies, X-ray diffraction (XRD), and electrical conductivity measurements. Results show that MA and P2O5 additives are responsible for the recovery of π-conjugation in rGO as the XRD pattern presents peaks corresponding to (002) graphitic-lattice planes, suggesting the formation of the sp2-like carbon structure. Raman spectra show disorders in graphene sheets. Elemental analysis shows that the proposed reduction method in the presence of additives also suggests the simultaneous insertion of phosphorus with a relatively high content (0.3–2.3 at%) in rGO. Electrical conductivity measurements show that higher amounts of additives used in the GO reduction more effectively improve electron mobility in rGO samples, as they possess the highest electrical conductivity. Moreover, the relatively high conductivity at low bulk density indicates that prepared rGO samples could be applied as metal-free and non-expensive carbon-based electrodes for supercapacitors and (bio)sensors.</jats:p>