People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borges, João Paulo Miranda Ribeiro
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Bioactive Hydroxyapatite Aerogels with Piezoelectric Particlescitations
- 2024Experimental study of Double-Elliptic-Ring-based thermomechanical metamaterials’ behaviourcitations
- 2023Biocomposite Macrospheres Based on Strontium-Bioactive Glass for Application as Bone Fillerscitations
- 2023Thermal, Structural, Morphological and Electrical Characterization of Cerium-Containing 45S5 for Metal Implant Coatingscitations
- 2023Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implantcitations
- 2023Hydroxyapatite-Barium Titanate Biocoatings Using Room Temperature Coblastingcitations
- 2023Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applicationscitations
- 2022Characterization of a Biocomposite of Electrospun PVDF Membranes with Embedded BaTiO3 Micro- and Nanoparticlescitations
- 2020Conductive electrospun Polyaniline/Polyvinylpyrrolidone nanofibers: Electrical and morphological characterization of new yarns for electronic textilescitations
- 2019Using water to control electrospun Polycaprolactone fibre morphology for soft tissue engineeringcitations
- 2019Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineeringcitations
- 2019Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaborationcitations
- 2019Development of polymeric anepectic meshes: Auxetic metamaterials with negative thermal expansioncitations
- 2019Polymer blending or fiber blending: a comparative study using chitosan and poly(ε-caprolactone) electrospun fiberscitations
- 2018Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineeringcitations
- 2017Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatincitations
- 2017Tailoring the morphology of hydroxyapatite particles using a simple solvothermal routecitations
- 2017Hybrid polysaccharide-based systems for biomedical applicationscitations
- 2016Thermal and magnetic properties of chitosan-iron oxide nanoparticlescitations
- 2016Natural Nanofibres for Composite Applicationscitations
- 2016A simple sol-gel route to the construction of hydroxyapatite inverted colloidal crystals for bone tissue engineeringcitations
- 2015Osteogenisis enhancement of hydroxyapatite based materials by electrical polarization
- 2015Chitin-Based Nanocomposites: Biomedical Applicationscitations
- 2015Electrospun mats of biodegradable chitosan-based polyurethane urea
- 2015Antimicrobial electrospun silver-, copper-and zinc-doped polyvinylpyrrolidone nanofibers
- 2014Cellulose‐Based Liquid Crystalline Composite Systemscitations
- 2014Effects of surfactants on the magnetic properties of iron oxide colloidscitations
- 2014Electrical polarization of a chitosan-hydroxyapatite composite
- 2013Enhancing the Response of Chemocapacitors with Electrospun Nanofiber Filmscitations
- 2011All-Cellulosic Based Composites
- 2006Mechanical characterization of dense hydroxyapatite blockscitations
- 2001Cellulose-based composite filmscitations
Places of action
Organizations | Location | People |
---|
article
Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implant
Abstract
<p>Dental implants have emerged as one of the most consistent and predictable treatments in the oral surgery field. However, the placement of the implant is sometimes associated with bacterial infection leading to its loss. In this work, we intend to solve this problem through the development of a biomaterial for implant coatings based on 45S5 Bioglass<sup>®</sup> modified with different amounts of niobium pentoxide (Nb<sub>2</sub>O<sub>5</sub>). The structural feature of the glasses, assessed by XRD and FTIR, did not change in spite of Nb<sub>2</sub>O<sub>5</sub> incorporation. The Raman spectra reveal the Nb<sub>2</sub>O<sub>5</sub> incorporation related to the appearance of NbO<sub>4</sub> and NbO<sub>6</sub> structural units. Since the electrical characteristics of these biomaterials influence their osseointegration ability, AC and DC electrical conductivity were studied by impedance spectroscopy, in the frequency range of 10<sup>2</sup>–10<sup>6</sup> Hz and temperature range of 200–400 K. The cytotoxicity of glasses was evaluated using the osteosarcoma Saos-2 cells line. The in vitro bioactivity studies and the antibacterial tests against Gram-positive and Gram-negative bacteria revealed that the samples loaded with 2 mol% Nb<sub>2</sub>O<sub>5</sub> had the highest bioactivity and greatest antibacterial effect. Overall, the results showed that the modified 45S5 bioactive glasses can be used as an antibacterial coating material for implants, with high bioactivity, being also non-cytotoxic to mammalian cells.</p>