People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Silva, Jorge Carvalho
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Preparation and Characterization of Zinc Ferrite and Gadolinium Iron Garnet Composite for Biomagnetic Applicationscitations
- 2024Cryoprotective Polysaccharides with Ordered Gel Structures Induce Ice Growth Anticipation and Survival Enhancement during Cell Cryopreservationcitations
- 2024Bioactive Hydroxyapatite Aerogels with Piezoelectric Particlescitations
- 2023Biocomposite Macrospheres Based on Strontium-Bioactive Glass for Application as Bone Fillerscitations
- 2023Thermal, Structural, Morphological and Electrical Characterization of Cerium-Containing 45S5 for Metal Implant Coatingscitations
- 2023Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implantcitations
- 2023Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implantcitations
- 2023Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applications ; Fabrication, Structural, Electrical, and Biological Analysiscitations
- 2023Hydroxyapatite-Barium Titanate Biocoatings Using Room Temperature Coblastingcitations
- 2023Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applicationscitations
- 2022Characterization of a Biocomposite of Electrospun PVDF Membranes with Embedded BaTiO3 Micro- and Nanoparticlescitations
- 2019Using water to control electrospun Polycaprolactone fibre morphology for soft tissue engineeringcitations
- 2019Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineeringcitations
- 2019Polymer blending or fiber blending: a comparative study using chitosan and poly(ε-caprolactone) electrospun fiberscitations
- 2018Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineeringcitations
- 2017Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineeringcitations
- 2017Hybrid polysaccharide-based systems for biomedical applicationscitations
- 2016Natural Nanofibres for Composite Applicationscitations
- 2016A simple sol-gel route to the construction of hydroxyapatite inverted colloidal crystals for bone tissue engineeringcitations
- 2015Osteogenisis enhancement of hydroxyapatite based materials by electrical polarization
- 2014Electrical polarization of a chitosan-hydroxyapatite composite
Places of action
Organizations | Location | People |
---|
article
Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implant
Abstract
<p>Dental implants have emerged as one of the most consistent and predictable treatments in the oral surgery field. However, the placement of the implant is sometimes associated with bacterial infection leading to its loss. In this work, we intend to solve this problem through the development of a biomaterial for implant coatings based on 45S5 Bioglass<sup>®</sup> modified with different amounts of niobium pentoxide (Nb<sub>2</sub>O<sub>5</sub>). The structural feature of the glasses, assessed by XRD and FTIR, did not change in spite of Nb<sub>2</sub>O<sub>5</sub> incorporation. The Raman spectra reveal the Nb<sub>2</sub>O<sub>5</sub> incorporation related to the appearance of NbO<sub>4</sub> and NbO<sub>6</sub> structural units. Since the electrical characteristics of these biomaterials influence their osseointegration ability, AC and DC electrical conductivity were studied by impedance spectroscopy, in the frequency range of 10<sup>2</sup>–10<sup>6</sup> Hz and temperature range of 200–400 K. The cytotoxicity of glasses was evaluated using the osteosarcoma Saos-2 cells line. The in vitro bioactivity studies and the antibacterial tests against Gram-positive and Gram-negative bacteria revealed that the samples loaded with 2 mol% Nb<sub>2</sub>O<sub>5</sub> had the highest bioactivity and greatest antibacterial effect. Overall, the results showed that the modified 45S5 bioactive glasses can be used as an antibacterial coating material for implants, with high bioactivity, being also non-cytotoxic to mammalian cells.</p>