Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baby, Samiya

  • Google
  • 1
  • 6
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Development and Clinical Validation of RT-LAMP-Based Lateral-Flow Devices and Electrochemical Sensor for Detecting Multigene Targets in SARS-CoV-211citations

Places of action

Chart of shared publication
Priya, Smriti
1 / 1 shared
Saxena, Apoorva
1 / 1 shared
Singh, Suman
1 / 2 shared
Mehrotra, Srishti
1 / 1 shared
Rai, Pawankumar
1 / 1 shared
Srivastava, Vikas
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Priya, Smriti
  • Saxena, Apoorva
  • Singh, Suman
  • Mehrotra, Srishti
  • Rai, Pawankumar
  • Srivastava, Vikas
OrganizationsLocationPeople

article

Development and Clinical Validation of RT-LAMP-Based Lateral-Flow Devices and Electrochemical Sensor for Detecting Multigene Targets in SARS-CoV-2

  • Priya, Smriti
  • Saxena, Apoorva
  • Baby, Samiya
  • Singh, Suman
  • Mehrotra, Srishti
  • Rai, Pawankumar
  • Srivastava, Vikas
Abstract

<jats:p>Consistently emerging variants and the life-threatening consequences of SARS-CoV-2 have prompted worldwide concern about human health, necessitating rapid and accurate point-of-care diagnostics to limit the spread of COVID-19. Still, However, the availability of such diagnostics for COVID-19 remains a major rate-limiting factor in containing the outbreaks. Apart from the conventional reverse transcription polymerase chain reaction, loop-mediated isothermal amplification-based (LAMP) assays have emerged as rapid and efficient systems to detect COVID-19. The present study aims to develop RT-LAMP-based assay system for detecting multiple targets in N, ORF1ab, E, and S genes of the SARS-CoV-2 genome, where the end-products were quantified using spectrophotometry, paper-based lateral-flow devices, and electrochemical sensors. The spectrophotometric method shows a LOD of 10 agµL−1 for N, ORF1ab, E genes and 100 agµL−1 for S gene in SARS-CoV-2. The developed lateral-flow devices showed an LOD of 10 agµL−1 for all four gene targets in SARS-CoV-2. An electrochemical sensor developed for N-gene showed an LOD and E-strip sensitivity of log 1.79 ± 0.427 pgµL−1 and log 0.067 µA/pg µL−1/mm2, respectively. The developed assay systems were validated with the clinical samples from COVID-19 outbreaks in 2020 and 2021. This multigene target approach can effectively detect emerging COVID-19 variants using combination of various analytical techniques at testing facilities and in point-of-care settings.</jats:p>

Topics
  • spectrophotometry