People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bociong, Kinga
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Enhancing the Antimicrobial Properties of Experimental Resin-Based Dental Composites through the Addition of Quaternary Ammonium Saltscitations
- 2024Antibacterial Agents Used in Modifications of Dental Resin Composites: A Systematic Reviewcitations
- 2023Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literaturecitations
- 2023Evaluation of the Selected Mechanical and Aesthetic Properties of Experimental Resin Dental Composites Containing 1-phenyl-1,2 Propanedione or Phenylbis(2,4,6-trimethylbenzoyl)-phosphine Oxide as a Photoinitiatorcitations
- 2023The Shear Bond Strength of Resin-Based Luting Cement to Zirconia Ceramics after Different Surface Treatmentscitations
- 2023The influence of quaternary ammonium salts on mechanical properties of light-cured resin dental compositescitations
- 2023Can Modification with Urethane Derivatives or the Addition of an Anti-Hydrolysis Agent Influence the Hydrolytic Stability of Resin Dental Composite?citations
- 2023Preparation of an experimental dental composite with different Bis-GMA/UDMA proportionscitations
- 2022Can TPO as Photoinitiator Replace “Golden Mean” Camphorquinone and Tertiary Amines in Dental Composites? Testing Experimental Composites Containing Different Concentration of Diphenyl(2,4,6-trimethylbenzoyl)phosphine Oxide citations
- 2021A Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Compositescitations
- 2021The Influence of Various Photoinitiators on the Properties of Commercial Dental Compositescitations
- 2017The Influence of Water Sorption of Dental Light-Cured Composites on Shrinkage Stresscitations
- 2016Wpływ sorpcji wody na naprężenia skurczowe materiałów kompozytowych
Places of action
Organizations | Location | People |
---|
article
Can TPO as Photoinitiator Replace “Golden Mean” Camphorquinone and Tertiary Amines in Dental Composites? Testing Experimental Composites Containing Different Concentration of Diphenyl(2,4,6-trimethylbenzoyl)phosphine Oxide
Abstract
The aim of this research was to compare the biomechanical properties of experimental composites containing a classic photoinitiating system (camphorquinone and 2-(dimethylami-no)ethyl methacrylate) or diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) as a photoinitiator. The produced light-cured composites consisted of an organic matrix-Bis-GMA (60 wt.%), TEGDMA (40 wt.%) and silanized silica filler (45 wt.%). Composites contained 0.27; 0.5; 0.75 or 1 wt.% TPO. Vickers hardness, microhardness (in the nanoindentation test), diametral tensile strength, resistance to three-point bending and the CIE L* a* b* colorimetric analysis was performed with each composite produced. The highest average Vickers hardness values were obtained for the composite containing 1 wt.% TPO (43.18 ± 1.7HV). The diametral tensile strength remains on regardless of the type and amount of photoinitiator statistically the same level, except for the composite containing 0.5 wt.% TPO for which DTS = 22.70 ± 4.7 MPa and is the lowest recorded value. The highest average diametral tensile strength was obtained for the composite containing 0.75 wt.% TPO (29.73 ± 4.8 MPa). The highest modulus of elasticity characterized the composite containing 0.75 wt.% TPO (5383.33 ± 1067.1 MPa). Composite containing 0.75 wt.% TPO has optimal results in terms of Vickers hardness, diametral tensile strength, flexural strength and modulus of elasticity. Moreover, these results are better than the parameters characterizing the composite containing the CQ/DMAEMA system. In terms of an aesthetic composite containing 0.75 wt.%. TPO is less yellow in color than the composite containing CQ/DMAEMA. This conclusion was objectively confirmed by test CIE L* a* b*.