People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jeleń, Piotr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Oxidation kinetics and electrical properties of oxide scales formed under exposure to air and Ar–H 2 -H 2 O atmospheres on the Crofer 22 H ferritic steel for high-temperature applications such as interconnects in solid oxide cell stacks
- 2022Influence of Cr Ion Implantation on Physical Properties of CuO Thin Filmscitations
- 2022New Ceramics Precursors Containing Si and Ge Atoms—Cubic Germasilsesquioxanes—Synthesis, Thermal Decomposition and Spectroscopic Analysiscitations
- 2022Influence of Si3N4 and CuO Nanoparticles on the Microstructure and Properties of Multiphase Graphite Oxide/Hydroxyapatite/Sodium Alginate Coatings Obtained By Electrophoretic Deposition on Titanium Alloycitations
- 2022Cuprous Oxide Thin Films Implanted with Chromium Ions—Optical and Physical Properties Studiescitations
- 2022An Overview of Some Nonpiezoelectric Properties of BaTiO3 Ceramics Doped by Eu Ionscitations
- 2021Influence of the replacement of silica by boron trioxide on the properties of bioactive glass scaffoldscitations
Places of action
Organizations | Location | People |
---|
article
Cuprous Oxide Thin Films Implanted with Chromium Ions—Optical and Physical Properties Studies
Abstract
<jats:p>Cuprous oxide is a semiconductor with potential for use in photocatalysis, sensors, and photovoltaics. We used ion implantation to modify the properties of Cu2O oxide. Thin films of Cu2O were deposited with magnetron sputtering and implanted with low-energy Cr ions of different dosages. The X-ray diffraction method was used to determine the structure and composition of deposited and implanted films. The optical properties of the material before and after implantation were studied using spectrophotometry and spectroscopic ellipsometry. The investigation of surface topography was performed with atomic force microscopy. The implantation had little influence on the atomic lattice constant of the oxide structure, and no clear dependence of microstrain or crystalline size on the dose of implantation was found. The appearance of phase change was observed, which could have been caused by the implantation. Ellipsometry measurements showed an increase in the total thickness of the sample with an increase in the amount of implanted Cr ions, which indicates the influence of implantation on the properties of the surface and subsurface region. The refractive index n, extinction coefficient k, and absorption coefficient optical parameters show different energy dependences related to implantation dose.</jats:p>