People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cox, Sophie C.
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024A genetic algorithm optimization framework for the characterization of hyper-viscoelastic materials
- 2023Tailoring absorptivity of highly reflective Ag powders by pulsed-direct current magnetron sputtering for additive manufacturing processescitations
- 2023Tailoring absorptivity of highly reflective Ag powders by pulsed-direct current magnetron sputtering for additive manufacturing processescitations
- 2022Surface Free Energy Dominates the Biological Interactions of Postprocessed Additively Manufactured Ti-6Al-4Vcitations
- 2022Controlled Release of Epigenetically-Enhanced Extracellular Vesicles from a GelMA/Nanoclay Composite Hydrogel to Promote Bone Repaircitations
- 2022The influence of thermal oxidation on the microstructure, fatigue properties, tribological and in vitro behaviour of laser powder bed fusion manufactured Ti-34 Nb-13Ta-5Zr-0.2O alloycitations
- 2022Development, characterisation, and modelling of processability of nitinol stents using laser powder bed fusioncitations
- 2022Photocurable antimicrobial silk-based hydrogels for corneal repaircitations
- 2021Surface finish of additively manufactured metalscitations
- 2021Biofilm viability checkercitations
- 2020Optimizing the antimicrobial performance of metallic glass composites through surface texturingcitations
- 2020Selective laser melting of Ti-6Al-4V: the impact of post-processing on the tensile, fatigue and biological properties for medical implant applicationscitations
- 2020Selective laser melting of ti-6al-4vcitations
- 2019Dynamic viscoelastic characterisation of human osteochondral tissuecitations
- 2018Formulation and viscoelasticity of mineralised hydrogels for use in bone-cartilage interfacial reconstructioncitations
- 2018The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral corescitations
- 2018Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channelscitations
- 2016Adding functionality with additive manufacturing : fabrication of titanium-based antibiotic eluting implantscitations
Places of action
Organizations | Location | People |
---|
article
Controlled Release of Epigenetically-Enhanced Extracellular Vesicles from a GelMA/Nanoclay Composite Hydrogel to Promote Bone Repair
Abstract
Extracellular vesicles (EVs) have garnered growing attention as promising acellular tools for bone repair. Although EVs’ potential for bone regeneration has been shown, issues associated with their therapeutic potency and short half-life in vivo hinders their clinical utility. Epigenetic reprogramming with the histone deacetylase inhibitor Trichostatin A (TSA) has been reported to promote the osteoinductive potency of osteoblast-derived EVs. Gelatin methacryloyl (GelMA) hydrogels functionalised with the synthetic nanoclay laponite (LAP) have been shown to effectively bind, stabilise, and improve the retention of bioactive factors. This study investigated the potential of utilising a GelMA-LAP hydrogel to improve local retention and control delivery of epigenetically enhanced osteoblast-derived EVs as a novel bone repair strategy. LAP was found to elicit a dose-dependent increase in GelMA compressive modulus and shear-thinning properties. Incorporation of the nanoclay was also found to enhance shape fidelity when 3D printed compared to LAP-free gels. Interestingly, GelMA hydrogels containing LAP displayed increased mineralisation capacity (1.41-fold) (p ≤ 0.01) over 14 days. EV release kinetics from these nanocomposite systems were also strongly influenced by LAP concentration with significantly more vesicles being released from GelMA constructs as detected by a CD63 ELISA (p ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-EVs) enhanced proliferation (1.09-fold), migration (1.83-fold), histone acetylation (1.32-fold) and mineralisation (1.87-fold) of human bone marrow stromal cells (hBMSCs) when released from the GelMA-LAP hydrogel compared to the untreated EV gels (p ≤ 0.01). Importantly, the TSA-EV functionalised GelMA-LAP hydrogel significantly promoted encapsulated hBMSCs extracellular matrix collagen production (≥1.3-fold) and mineralisation (≥1.78-fold) in a dose-dependent manner compared to untreated EV constructs (p ≤ 0.001). Taken together, these findings demonstrate the potential of combining epigenetically enhanced osteoblast-derived EVs with a nanocomposite photocurable hydrogel to promote the therapeutic efficacy of acellular vesicle approaches for bone regeneration