People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mota, Carlos
European Commission
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Upcycling Fishing Net Waste and Metal Oxide from Electroplating Waste into Alga Cultivation Structures with Antibacterial Properties
- 2023Blast fragment impact of angle-ply composite structures for buildings wall protectioncitations
- 2023Chitin nanofibrils modulate mechanical response in tympanic membrane replacementscitations
- 2023Matrix metalloproteinase degradable, in situ photocrosslinked nanocomposite bioinks for bioprinting applicationscitations
- 2022Advanced Coatings of Polyureas for Building Blast Protection: Physical, Chemical, Thermal and Mechanical Characterizationcitations
- 2021Shaping and properties of thermoplastic scaffolds in tissue regeneration: The effect of thermal history on polymer crystallization, surface characteristics and cell fatecitations
- 2021Additive manufactured scaffolds for bone tissue engineering: Physical characterization of thermoplastic composites with functional fillerscitations
- 2021Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineeringcitations
- 2021Additive Manufactured Scaffolds for Bone Tissue Engineering: Physical Characterization of Thermoplastic Composites with Functional Fillerscitations
- 2021Controllable four axis extrusion-based additive manufacturing system for the fabrication of tubular scaffolds with tailorable mechanical propertiescitations
- 2021Chitin Nanofibril Application in Tympanic Membrane Scaffolds to Modulate Inflammatory and Immune Responsecitations
- 2021Study of the Filtration Performance of Multilayer and Multiscale Fibrous Structurescitations
- 2019Conception and characterization of different properties from a composite thermoformable with polymeric matrix and cellulosic fibres
- 2018Characterization of recycled carbon fibers reinforcing thermoplastic polymers
- 2018Influence of carbon nanotubes in the performance of a composite materials for ballistic helmets
- 2017Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone developmentcitations
- 2016Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regenerationcitations
- 2016Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regenerationcitations
- 2016Pseudo-ductile Braided Composite Rods (BCRs) produced by braidtrusion
- 2015Mechanical characterization of bio-epoxy ecocomposites reinforced with fibrous structures based on natural fibers
- 2015Processing and characterization of plates made from granulate of waste electrical cables
- 2015Mechanical properties of polypropylene/natural fiber composites: comparison with glass fiber
- 2014Estudo da adesão entre os materiais que constituem uma estrutura compósitas multicamada
- 2014Desenvolvimento e caracterização de varões compósitos híbridos para reforço de betão
- 2014Desenvolvimento de painéis compósitos multicamada com propriedades de resistência ao fogo
- 2014Development of multi-layer fibrous composites for fire resistant and sound insulating doors
- 2014Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer modelscitations
Places of action
Organizations | Location | People |
---|
article
Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineering
Abstract
<p>Various hydrogel systems have been developed as biomaterial inks for bioprinting, including natural and synthetic polymers. However, the available biomaterial inks, which allow printability, cell viability, and user-defined customization, remains limited. Incorporation of biological extracellular matrix materials into tunable synthetic polymers can merge the benefits of both systems towards versatile materials for biofabrication. The aim of this study was to develop novel, cell compatible dual-component biomaterial inks and bioinks based on poly(vinyl alcohol) (PVA) and solubilized decellularized cartilage matrix (SDCM) hydrogels that can be utilized for cartilage bioprinting. In a first approach, PVA was modified with amine groups (PVA-A), and mixed with SDCM. The printability of the PVA-A/SDCM formulations cross-linked by genipin was evaluated. On the second approach, the PVA was functionalized with cis-5-norbornene-endo-2,3-dicarboxylic anhydride (PVA-Nb) to allow an ultrafast light-curing thiol-ene cross-linking. Comprehensive experiments were conducted to evaluate the influence of the SDCM ratio in mechanical properties, water uptake, swelling, cell viability, and printability of the PVA-based formulations. The studies performed with the PVA-A/SDCM formulations cross-linked by genipin showed printability, but poor shape retention due to slow cross-linking kinetics. On the other hand, the PVA-Nb/SDCM showed good printability. The results showed that incorporation of SDCM into PVA-Nb reduces the compression modulus, enhance cell viability, and bioprintability and modulate the swelling ratio of the resulted hydrogels. Results indicated that PVA-Nb hydrogels containing SDCM could be considered as versatile bioinks for cartilage bioprinting.</p>