People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Biernat, Monika
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023The effect of extrusion and injection molding on physical, chemical, and biological properties of PLLA/HAp whiskers compositescitations
- 2022The Preliminary Assessment of New Biomaterials Necessitates a Comparison of Direct and Indirect Cytotoxicity Methodological Approachescitations
- 2022Effects of Sterilization and Hydrolytic Degradation on the Structure, Morphology and Compressive Strength of Polylactide-Hydroxyapatite Compositescitations
- 2022Dual Modification of Porous Ca-P/PLA Composites with APTES and Alendronate Improves Their Mechanical Strength and Cytobiocompatibility towards Human Osteoblastscitations
- 2021The Effect of Pore Size Distribution and l-Lysine Modified Apatite Whiskers (HAP) on Osteoblasts Response in PLLA/HAP Foam Scaffolds Obtained in the Thermally Induced Phase Separation Processcitations
- 2021Three Component Composite Scaffolds Based on PCL, Hydroxyapatite, and L-Lysine Obtained in TIPS-SL: Bioactive Material for Bone Tissue Engineeringcitations
- 2019The studies of cytotoxicity and antibacterial activity of composites with ZnO-doped bioglasscitations
- 2019Influence of low-temperature reaction time on morphology and phase composition of short calcium phosphate whiskerscitations
- 2017Controlling the microstructure of lyophilized porous biocomposites by the addition of ZnO-doped bioglasscitations
- 2016Orientation and biorecognition of immunoglobulin adsorbed on spin-cast poly(3-alkylthiophenes) : impact of polymer film crystallinitycitations
Places of action
Organizations | Location | People |
---|
article
The Effect of Pore Size Distribution and l-Lysine Modified Apatite Whiskers (HAP) on Osteoblasts Response in PLLA/HAP Foam Scaffolds Obtained in the Thermally Induced Phase Separation Process
Abstract
<jats:p>In this research, we prepared foam scaffolds based on poly(l-lactide) (PLLA) and apatite whiskers (HAP) using thermally induced phase separation technique supported by the salt leaching process (TIPS-SL). Using sodium chloride having a size of (a) 150–315 μm, (b) 315–400 μm, and (c) 500–600 μm, three types of foams with different pore sizes have been obtained. Internal structure of the obtained materials has been investigated using SEM as well as μCT. The materials have been studied by means of porosity, density, and compression tests. As the most promising, the composite prepared with salt size of 500–600 μm was prepared also with the l-lysine modified apatite. The osteoblast hFOB 1.19 cell response for the scaffolds was also investigated by means of cell viability, proliferation, adhesion/penetration, and biomineralization. Direct contact cytotoxicity assay showed the cytocompatibility of the scaffolds. All types of foam scaffolds containing HAP whiskers, regardless the pore size or l-lysine modification induced significant stimulatory effect on the cal-cium deposits formation in osteoblasts. The PLLA/HAP scaffolds modified with l-lysine stimulated hFOB 1.19 osteoblasts proliferation. Compared to the scaffolds with smaller pores (150–315 µm and 315–400 µm), the PLLA/HAP foams with large pores (500–600 µm) promoted more effective ad-hesion of osteoblasts to the surface of the biomaterial.</jats:p>