People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ihiawakrim, Dris
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Ultrasonic chemical synthesis of zinc-manganese ferrites with improved magnetic properties.citations
- 2024Tailoring the pore structure of iron oxide core@stellate mesoporous silica shell nanocomposites: effects on MRI and magnetic hyperthermia properties and applicability to anti-cancer therapiescitations
- 2022A detailed investigation of the core@shell structure of exchanged coupled magnetic nanoparticles after performing solvent annealingcitations
- 2022TiO2 supported Co catalysts for the hydrogenation of γ-valerolactone to 2methyltetrahydrofuran: influence of the supportcitations
- 2022Shedding light on functional hybrid nanocomposites 19th century paint mediumcitations
- 2021Versatile template-directed synthesis of gold nanocages with a predefined number of windowscitations
- 2020Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in ZnxFe3−xO4 Nanoparticlescitations
- 2020Efficiency of pyoverdines in iron removal from flocking asbestos waste: An innovative bacterial bioremediation strategycitations
- 2019Study by advanced transmission electron microscopy techniques fragile materials
- 2019The effect of basic pH on the elaboration of ZnFe2O4 nanoparticles by co-precipitation method: Structural, magnetic and hyperthermia characterizationcitations
- 2019The effect of basic pH on the elaboration of ZnFe2O4 nanoparticles by co-precipitation method: Structural, magnetic and hyperthermia characterizationcitations
- 2018High pressures pathway toward boron-based nanostructured solidscitations
- 2018High pressures pathway toward boron-based nanostructured solidscitations
- 2016Metal nanoparticle mediated space charge and its optical control in an organic hole-only devicecitations
- 2016Surface plasmon resonance of an individual nano-object on an absorbing substrate : quantitative effects of distance and 3D orientationcitations
- 2016Surface plasmon resonance of an individual nano-object on an absorbing substrate : quantitative effects of distance and 3D orientationcitations
- 2016Advanced three dimensional characterization of silica-based ultraporous materialscitations
- 2014Magnetic Properties of Mono- and Multilayer Assemblies of Iron Oxide Nanoparticles Promoted by SAMscitations
- 2013A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticlescitations
- 2013A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticlescitations
- 2012Hexahistidine-Tagged Single-Walled Carbon Nanotubes (His6-tagSWNTs): A Multifunctional Hard Template for Hierarchical Directed Self-Assembly and Nanocomposite Constructioncitations
Places of action
Organizations | Location | People |
---|
article
Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in ZnxFe3−xO4 Nanoparticles
Abstract
Superparamagnetic ZnxFe3−xO4 magnetic nanoparticles (0 ≤ x < 0.5) with spherical shapes of 16 nm average diameter and different zinc doping level have been successfully synthesized by co-precipitation method. The homogeneous zinc substitution of iron cations into the magnetite crystalline structure has led to an increase in the saturation magnetization of nanoparticles up to 120 Am2/kg for x ~ 0.3. The specific absorption rate (SAR) values increased considerably when x is varied between 0 and 0.3 and then decreased for x ~ 0.5. The SAR values are reduced upon the immobilization of the nanoparticles in a solid matrix being significantly increased by a pre-alignment step in a uniform static magnetic field before immobilization. The SAR values displayed a quadratic dependence on the alternating magnetic field amplitude (H) up to 35 kA/m. Above this value, a clear saturation effect of SAR was observed that was successfully described qualitatively and quantitatively by considering the non-linear field’s effects and the magnetic field dependence of both Brown and Neel relaxation times. The Neel relaxation time depends more steeply on H as compared with the Brown relaxation time, and the magnetization relaxation might be dominated by the Neel mechanism, even for nanoparticles with large diameter.