People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Klajnert-Maculewicz, Barbara
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Dendrimersomes: Biomedical applicationscitations
- 2020Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Effcient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery
- 2020Glucose-modified carbosilane dendrimers: Interaction with model membranes and human serum albumincitations
- 2020Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Ecient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Deliverycitations
- 2019Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitrocitations
- 2019PAMAM and PPI Dendrimers in Biophysical and Thermodynamic Studies on the Delivery of Therapeutic Nucleotides, Nucleosides and Nucleobase Derivatives for Anticancer Applicationcitations
- 2019Non-Traditional Intrinsic Luminescence (NTIL): Dynamic Quenching Demonstrates the Presence of Two Distinct Fluorophore Types Associated with NTIL Behavior in Pyrrolidone-Terminated PAMAM Dendrimerscitations
- 2017Dendrimers as nanocarriers for nucleoside analoguescitations
- 2017Dendrimers for fluorescence-based bioimagingcitations
- 2017Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Linescitations
- 2016Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anti-cancer photosensitizers with dendrimerscitations
- 2015Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological actioncitations
- 2013Dendrimers in Biomedical Applicationscitations
- 2013Dendrimers as Antiamyloidogenic Agents. Dendrimer-amyloid Aggregates Morphology and Cell Toxicitycitations
- 2013Characterization of Dendrimers and Their Interactions with Biomolecules for Medical use by Means of Electron Magnetic Resonancecitations
- 2013Natural and Synthetic Biomaterials as Composites of Advanced Drug Delivery Nano Systems (ADDNSS). Biomedical Applicationscitations
Places of action
Organizations | Location | People |
---|
article
Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Ecient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery
Abstract
The disruption of the cellular pathways of protein biosynthesis through the mechanism of RNA interference has been recognized as a tool of great diagnostic and therapeutic significance. However, in order to fully exploit the potential of this phenomenon, efficient and safe carriers capable of overcoming extra- and intracellular barriers and delivering siRNA to the target cells are needed. Recently, attention has focused on the possibility of the application of multifunctional nanoparticles, dendrimers, as potential delivery devices for siRNA. The aim of the present work was to evaluate the formation of dendriplexes using novel poly(lysine) dendrimers (containing lysine and arginine or histidine residues in their structure), and to verify the hypothesis that the use of these polymers may allow an efficient method of siRNA transfer into the cells in vitro to be obtained. The fluorescence polarization studies, as well as zeta potential and hydrodynamic diameter measurements were used to characterize the dendrimer:siRNA complexes. The cytotoxicity of dendrimers and dendriplexes was evaluated with the resazurin-based assay. Using the flow cytometry technique, the efficiency of siRNA transport to the myeloid cells was determined. This approach allowed us to determine the properties and optimal molar ratios of dendrimer:siRNA complexes, as well as to demonstrate that poly(lysine) dendrimers may serve as efficient carriers of genetic material, being much more effective than the commercially available transfection agent Lipofectamine 2000. This outcome provides the basis for further research on the application of poly(lysine) dendrimers as carriers for nucleic acids in the field of gene therapy.