People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Teske, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2022Characterization of Ball-milled Poly(Nisopropylacrylamide) Nanogels
- 2022The influence of PEGDA’s molecular weight on its mechanical properties in the context of biomedical applicationscitations
- 2021A hydrogel based quasi-stationary test system for in vitro dexamethasone release studies for middle ear drug delivery systems
- 2020Smart releasing electrospun nanofibers-poly: L.lactide fibers as dual drug delivery system for biomedical application.citations
- 2020PEGDA drug delivery scaffolds manufactured with a novel hybrid AM process
- 20193D-printed PEGDA structure with multiple depots for advanced drug delivery systems
- 2019A Novel Hybrid Additive Manufacturing Process for Drug Delivery Systems with Locally Incorporated Drug Depots. citations
- 2019Thermomechanical properties of PEGDA in combination with different photo-curable comonomerscitations
- 2019Controlled biodegradation of metallic biomaterials by plasma polymer coatings using hexamethyldisiloxane and allylamine monomerscitations
- 2018Thermomechanical properties of PEGDA and its co-polymerscitations
- 2018Novel approach for a PTX/VEGF dual drug delivery system in cardiovascular applications-an innovative bulk and surface drug immobilization.citations
- 2017Osteointegration of Porous Poly-ε-Caprolactone-Coated and Previtalised Magnesium Implants in Critically Sized Calvarial Bone Defects in the Mouse Model. citations
- 2017In Vitro Evaluation of PCL and P(3HB) as Coating Materials for Selective Laser Melted Porous Titanium Implants. citations
- 2017Influence of bulk incorporation of FDAc and PTX on polymer propertiescitations
- 2015Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL
- 2015Surface Modification of Biodegradable Polymers towards Better Biocompatibility and Lower Thrombogenicity.citations
- 2015Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL.citations
- 2015SLM produced porous titanium implant improvements for enhanced vascularization and osteoblast seeding.citations
Places of action
Organizations | Location | People |
---|
article
Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL.
Abstract
Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating.