Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Duarte, Diogo

  • Google
  • 2
  • 9
  • 170

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Bioadhesive Hyaluronic Acid-Based Hydrogels for Spinal Cord Injury7citations
  • 2019UAV-Based Structural Damage Mapping163citations

Places of action

Chart of shared publication
Correia, Cátia
1 / 2 shared
Alves, Natália M.
1 / 6 shared
Pashkuleva, Iva
1 / 28 shared
Peixoto, Daniela
1 / 4 shared
Reis, Rui Luís
1 / 1359 shared
Gerke, Markus
1 / 1 shared
Vetrivel, Anand
1 / 2 shared
Nex, Francesco
1 / 2 shared
Kerle, Norman
1 / 2 shared
Chart of publication period
2024
2019

Co-Authors (by relevance)

  • Correia, Cátia
  • Alves, Natália M.
  • Pashkuleva, Iva
  • Peixoto, Daniela
  • Reis, Rui Luís
  • Gerke, Markus
  • Vetrivel, Anand
  • Nex, Francesco
  • Kerle, Norman
OrganizationsLocationPeople

article

UAV-Based Structural Damage Mapping

  • Gerke, Markus
  • Vetrivel, Anand
  • Duarte, Diogo
  • Nex, Francesco
  • Kerle, Norman
Abstract

Structural disaster damage detection and characterization is one of the oldest remote sensing challenges, and the utility of virtually every type of active and passive sensor deployed on various air- and spaceborne platforms has been assessed. The proliferation and growing sophistication of unmanned aerial vehicles (UAVs) in recent years has opened up many new opportunities for damage mapping, due to the high spatial resolution, the resulting stereo images and derivatives, and the flexibility of the platform. This study provides a comprehensive review of how UAV-based damage mapping has evolved from providing simple descriptive overviews of a disaster science, to more sophisticated texture and segmentation-based approaches, and finally to studies using advanced deep learning approaches, as well as multi-temporal and multi-perspective imagery to provide comprehensive damage descriptions. The paper further reviews studies on the utility of the developed mapping strategies and image processing pipelines for first responders, focusing especially on outcomes of two recent European research projects, RECONASS (Reconstruction and Recovery Planning: Rapid and Continuously Updated Construction Damage, and Related Needs Assessment) and INACHUS (Technological and Methodological Solutions for Integrated Wide Area Situation Awareness and Survivor Localization to Support Search and Rescue Teams). Finally, recent and emerging developments are reviewed, such as recent improvements in machine learning, increasing mapping autonomy, damage mapping in interior, GPS-denied environments, the utility of UAVs for infrastructure mapping and maintenance, as well as the emergence of UAVs with robotic abilities.

Topics
  • impedance spectroscopy
  • texture
  • machine learning