People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hinderdael, Michaël
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Experimental evaluation of the metal powder particle flow on the melt pool during directed energy depositioncitations
- 2023Measuring and Predicting the Effects of Residual Stresses from Full-Field Data in Laser-Directed Energy Depositioncitations
- 2023Comparison and Analysis of Hyperspectral Temperature Data in Directed Energy Depositioncitations
- 2022Experimental identification of process dynamics for real-time control of directed energy depositioncitations
- 2022Powder-Gas Jet Velocity Characterization during Coaxial Directed Energy Deposition Processcitations
- 2021Structural health monitoring through surface acoustic wave inspection deployed on capillaries embedded in additively manufactured components
- 2021Process parameter study for enhancement of directed energy deposition powder efficiency based on single-track geometry evaluationcitations
- 2021Production Assessment of Hybrid Directed Energy Deposition Manufactured Sample with Integrated Effective Structural Health Monitoring channel (eSHM)citations
- 2020Offline powder-gas nozzle jet characterization for coaxial laser-based Directed Energy Depositioncitations
- 2019Hyperspectral and Thermal Temperature Estimation During Laser Claddingcitations
- 2019Analytical Modeling of Embedded Load Sensing Using Liquid-Filled Capillaries Integrated by Metal Additive Manufacturingcitations
- 2019On the Influence of Capillary-Based Structural Health Monitoring on Fatigue Crack Initiation and Propagation in Straight Lugscitations
- 2018Fatigue performance of powder bed fused Ti-6Al-4V component with integrated chemically etched capillary for structural health monitoring application.citations
- 2018Effective Structural Health Monitoring through the Monitoring of Pressurized Capillaries in Additive Manufactured Materials
- 2017Effect of Surface Roughness on Fatigue Crack Initiation in Additive Manufactured components with Integrated Capillary for SHM Application
- 2017Proof of Concept of Integrated Load Measurement in 3D Printed Structurescitations
- 2017Model-based temperature feedback control of laser cladding using high-resolution hyperspectral imagingcitations
- 2017Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring Systemcitations
- 2016Hardware-in-the-loop control of additive manufacturing processes using temperature feedbackcitations
- 2016Evaluation of the Diffuse Reflectivity Behaviour of the Melt Pool During the Laser Metal Deposition Process
- 2016Temperature Feedback Control of Laser Cladding Using High Resolution Hyperspectral Imaging
- 2015Hardware-in-the-loop control of additive manufacturing processes using temperature feedback
Places of action
Organizations | Location | People |
---|
document
Fatigue performance of powder bed fused Ti-6Al-4V component with integrated chemically etched capillary for structural health monitoring application.
Abstract
Fatigue performance of additively manufactured (AM) components is still uncertain and inconsistent. Structural health monitoring (SHM) systems offer a solution to continuously monitor the structural integrity of a structure. The effective Structural Health Monitoring (eSHM) system is the first SHM principle developed with the principal purpose to monitor AM components. The eSHM principle exploits the design freedom offered by AM to integrate a capillary inside the component. The capillary is put under low vacuum and the pressure is monitored during the operation of the component. As-built AM surfaces report elevated surface roughness and are one of the principle causes of premature fatigue initiation and fatigue failure. The current study will investigate the effect of a chemical etching (CE) post-process on the capillary surface and evaluate its effect on the fatigue performance.