Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pironon, Jacques

  • Google
  • 2
  • 6
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Experimental Modelling of the Caprock/Cement Interface Behaviour under CO2 Storage Conditions: Effect of Water and Supercritical CO2 from a Cathodoluminescence Study8citations
  • 2014Experimental study of CO2 injection in a simulated injection well: the MIRAGES experiment18citations

Places of action

Chart of shared publication
Sterpenich, Jérôme
2 / 5 shared
Jobard, Emmanuel
2 / 2 shared
Corvisier, Jérôme
1 / 4 shared
Randi, Aurélien
2 / 4 shared
Hajj, Hicham El
1 / 1 shared
Caumon, Marie-Camille
1 / 1 shared
Chart of publication period
2018
2014

Co-Authors (by relevance)

  • Sterpenich, Jérôme
  • Jobard, Emmanuel
  • Corvisier, Jérôme
  • Randi, Aurélien
  • Hajj, Hicham El
  • Caumon, Marie-Camille
OrganizationsLocationPeople

article

Experimental Modelling of the Caprock/Cement Interface Behaviour under CO2 Storage Conditions: Effect of Water and Supercritical CO2 from a Cathodoluminescence Study

  • Sterpenich, Jérôme
  • Jobard, Emmanuel
  • Corvisier, Jérôme
  • Pironon, Jacques
  • Randi, Aurélien
Abstract

In the framework of CO 2 geological storage, one of the critical points leading to possible important CO 2 leakage is the behaviour of the different interfaces between the rocks and the injection wells. This paper discussed the results from an experimental modelling of the evolution of a caprock/cement interface under high pressure and temperature conditions. Batch experiments were performed with a caprock (Callovo-Oxfordian claystone of the Paris Basin) in contact with a cement (Portland class G) in the presence of supercritical CO 2 under dry or wet conditions. The mineralogical and mechanical evolution of the caprock, the Portland cement, and their interface submitted to the attack of carbonic acid either supercritical or dissolved in a saline water under geological conditions of pressure and temperature. This model should help to better understand the behaviour of interfaces in the proximal zone at the injection site and to prevent risks of leakage from this critical part of injection wells. After one month of ageing at 80 • C under 100 bar of CO 2 pressure, the caprock, the cement, and the interface between the caprock and cement are investigated with Scanning Electron Microscopy (SEM) and cathodoluminescence (CL). The main results reveal (i) the influence of the alteration conditions: with dry CO 2 , the carbonation of the cement is more extended than under wet conditions; (ii) successive phases of carbonate precipitation (calcite and aragonite) responsible for the loss of mechanical cohesion of the interfaces; (iii) the mineralogical and chemical evolution of the cement which undergoes successive phases of carbonation and leaching; (iv) the limited reactivity of the clayey caprock despite the acidic attack of CO 2 ; and (v) the influence of water on the transport mechanisms of dissolved species and thus on the location of mineral precipitations.

Topics
  • impedance spectroscopy
  • mineral
  • phase
  • scanning electron microscopy
  • experiment
  • cement
  • precipitation
  • leaching
  • aging