Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Martin-Gil, Jesús

  • Google
  • 2
  • 7
  • 5

Universidad de Valladolid

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Opportunities for Ivory Nut Residue Valorization as a Source of Nanocellulose Colloidal Suspensions4citations
  • 2018On the composition of gastroliths from broiler breeders1citations

Places of action

Chart of shared publication
Martín-Ramos, Pablo
2 / 2 shared
Putaux, Jean-Luc
1 / 24 shared
Portero-Barahona, Patricia
1 / 1 shared
Simbaña, Jennifer
1 / 1 shared
Sanchez Bascones, Mercedes
1 / 1 shared
Carriónprieto, P.
1 / 1 shared
Ruiz-Potosme, Norlan
1 / 1 shared
Chart of publication period
2022
2018

Co-Authors (by relevance)

  • Martín-Ramos, Pablo
  • Putaux, Jean-Luc
  • Portero-Barahona, Patricia
  • Simbaña, Jennifer
  • Sanchez Bascones, Mercedes
  • Carriónprieto, P.
  • Ruiz-Potosme, Norlan
OrganizationsLocationPeople

article

Opportunities for Ivory Nut Residue Valorization as a Source of Nanocellulose Colloidal Suspensions

  • Martín-Ramos, Pablo
  • Putaux, Jean-Luc
  • Portero-Barahona, Patricia
  • Simbaña, Jennifer
  • Martin-Gil, Jesús
Abstract

<jats:p>Ivory nut seeds have been traditionally exploited in Central and South America for obtaining vegetable ivory. The residues from this industry are susceptible to valorization as a source of fatty acids (by organic extraction) and mannans (by alkaline dissolution and regeneration). Nonetheless, cellulose may also be recovered at the end of this fractionation process by acid hydrolysis and functionalization, with associated advantages over other lignocellulosic sources due to the absence of lignin in the endospermic tissue. In this work, various experimental parameters (sulfuric acid concentration, temperature, and hydrolysis time) were investigated to optimize the processing conditions for preparing stable nanocellulose suspensions after ultrasonication. The most stable nanocellulose gel (1 wt% solid content) was obtained after 4-h hydrolysis at 60 °C with 8 M H2SO4 and was characterized by using complementary tech-niques, including dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), nano-fibril sulfation measurements, vibrational and solid-state nuclear magnetic resonance (CP/MAS 13C-NMR) spectroscopies, and thermal analysis. This nanocellulose hydrogel is susceptible to further utilization in various applications and fields, e.g., in agricul-ture for controlling the release of agrochemicals, in pharmaceutics for developing new dosage forms, and in the treatment of wastewater from the textile and paper industries.</jats:p>

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • extraction
  • thermal analysis
  • transmission electron microscopy
  • lignin
  • cellulose
  • Nuclear Magnetic Resonance spectroscopy
  • functionalization
  • dynamic light scattering
  • fractionation
  • ultrasonication