People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Park, Hyung-Ho
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Facile Synthesis of Surface-Modified Hollow-Silica (SiO2) Aerogel Particles via Oil–Water–Oil Double Emulsion Methodcitations
- 2024Mechanically Strengthened Aerogels through Multiscale, Multicompositional, and Multidimensional Approaches: A Reviewcitations
- 2023In Situ Sol-Gel Assembly of Graphitic Carbonitride Nanosheet-Supported Colloidal Binary Metal Sulfide into Nanosandwich-Like Multifunctional 3D Macroporous Aerogel Catalysts for Asymmetric Supercapacitor and Electrocatalytic Oxygen and Hydrogen Evolutioncitations
- 2023In Situ Sol-Gel Assembly of Graphitic Carbonitride Nanosheet-Supported Colloidal Binary Metal Sulfide into Nanosandwich-Like Multifunctional 3D Macroporous Aerogel Catalysts for Asymmetric Supercapacitor and Electrocatalytic Oxygen and Hydrogen Evolutioncitations
- 2023Thermal Study of Carbon-Fiber-Reinforced Polymer Composites Using Multiscale Modelingcitations
- 2023A Simple Method to Produce an Aluminum Oxide-Passivated Tungsten Diselenide/n-Type Si Heterojunction Solar Cell with High Power Conversion Efficiencycitations
- 2023A Simple Method to Produce an Aluminum Oxide-Passivated Tungsten Diselenide/n-Type Si Heterojunction Solar Cell with High Power Conversion Efficiencycitations
- 2023SILAR Synthesized Binder-Free, Hydrous Cobalt Phosphate Thin Film Electrocatalysts for OER Application: Annealing Effect on the Electrocatalytic Activitycitations
- 2022Intercalation-type pseudocapacitive clustered nanoparticles of nickel–cobalt phosphate thin films synthesized via electrodeposition as cathode for high-performance hybrid supercapacitor devicescitations
- 2019Facile Synthesis of SnO2 Aerogel/Reduced Graphene Oxide Nanocomposites via in Situ Annealing for the Photocatalytic Degradation of Methyl Orangecitations
- 2019Temperature effects on electromechanical response of deposited piezoelectric sensors used in structural health monitoring of aerospace structurescitations
- 2018PZT/PZT and PZT/BiT Composite Piezo-Sensors in Aerospace SHM Applications: Photochemical Metal Organic + Infiltration Deposition and Characterizationcitations
- 2016Electrical properties of UV-irradiated thick film piezo-sensors on superalloy IN718 using photochemical metal organic depositioncitations
- 2015Thickness and thermal processing contribution on piezoelectric characteristics of Pb(Zr-Ti)O3 thick films deposited on curved IN738 using sol–gel techniquecitations
- 2013Effect of Mechanical Deformation on Thermoelectric Properties of p-Type (Bi0.225Sb0.775)2Te3 Alloyscitations
Places of action
Organizations | Location | People |
---|
article
Facile Synthesis of Surface-Modified Hollow-Silica (SiO2) Aerogel Particles via Oil–Water–Oil Double Emulsion Method
Abstract
<jats:p>Due to their high surface area and low weight, silica aerogels are ideally suited for several uses, including drug delivery, catalysis, and insulation. Oil–water–oil (OWO) double emulsion is a simple and regulated technique for encasing a volatile oil phase in a silica shell to produce hollow silica (SiO2) aerogel particles by using hydrophilic and hydrophobic emulsifiers. In this study, the oil–water–oil (OWO) double emulsion method was implemented to synthesize surface-modified hollow silica (SiO2) aerogel particles in a facile and effective way. This investigation mainly focused on the influence of the N-hexane-to-water glass (OW) ratio (r) in the first emulsion, silica (water glass) content concentration (x), and surfactant concentration (s) variations. Furthermore, surface modification techniques were utilized to customize the aerogel’s characteristics. The X-ray diffraction (XRD) patterns showed no imprints of impurities except SiO2. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images highlight the hollow microstructure of silica particles. Zeta potential was used to determine particle size analysis of hollow silica aerogel particles. The oil–water–oil (OWO) double emulsion approach was successfully employed to synthesize surface-modified hollow silica (SiO2) aerogel particles, providing precise control over the particle characteristics. By the influence of the optimization condition, this approach improves the aerogel’s potential applications in drug delivery, catalysis, and insulation by enabling surface modifications.</jats:p>