Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rahim, Mohamad Kamal A.

  • Google
  • 2
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Minkowski–Sierpinski Fractal Structure-Inspired 2 × 2 Antenna Array for Use in Next-Generation Wireless Systems7citations
  • 2011A compact circularly polarized and wideband Rectangular Dielectric Resonator Antenna3citations

Places of action

Chart of shared publication
Vallappil, Arshad Karimbu
1 / 1 shared
Awais, Qasim
1 / 1 shared
Khalajmehrabadi, Ali
1 / 1 shared
Khalily, Mohsen
1 / 2 shared
Kamarudin, M. R.
1 / 8 shared
Chart of publication period
2023
2011

Co-Authors (by relevance)

  • Vallappil, Arshad Karimbu
  • Awais, Qasim
  • Khalajmehrabadi, Ali
  • Khalily, Mohsen
  • Kamarudin, M. R.
OrganizationsLocationPeople

article

Minkowski–Sierpinski Fractal Structure-Inspired 2 × 2 Antenna Array for Use in Next-Generation Wireless Systems

  • Vallappil, Arshad Karimbu
  • Rahim, Mohamad Kamal A.
  • Awais, Qasim
Abstract

<jats:p>In this paper, the design, simulation, fabrication, and characterization study of a low-cost and directional hybrid four-element (2 × 2 configuration) Minkowski–Sierpinski fractal antenna array (MSFAA) for the high-efficiency IEEE 802.11ax WLANs (Wi-Fi 6E) and the sub-6 GHz 5G wireless system is presented. Each element of the array is separated by 0.7 λ0. The complete four-element fractal antenna array system includes designing the single-element Minkowski–Sierpinski fractal antenna using two different substrates for performance comparison and an equal-split Wilkinson power divider (WPD) to achieve power division and to form a feed network. The single-element antenna, four-element fractal antenna array, and WPDs are fabricated using a flame-resistant (FR4) glass epoxy substrate with a dielectric constant (εr) of 4.3 and thickness (h) of 1.66 mm. For performance comparison, a high-end Rogers thermoset microwave material (TMM4) substrate is also used, having εr = 4.5 and h = 1.524mm, respectively. The designed four-element fractal antenna array operates at the dual-band frequencies of 4.17 and 5.97 GHz, respectively. The various performance parameters of the antenna array, such as return loss, bandwidth, gain, and 2D and 3D radiation patterns, are analyzed using CST Microwave Studio. The fabricated four-element antenna array provides the bandwidth and gain characteristic of 85 MHz/4.19 dB and 182 MHz/9.61 dB at 4.17 and 5.97 GHz frequency bands, respectively. The proposed antenna array design gives an improvement in the bandwidth, gain, and radiation pattern in the boresight at both frequencies. In the IEEE 802.11 ax WLANs (Wi-Fi 6E) deployments and the upcoming 5G wireless and satellite communication systems, it is critical to have directional antenna arrays to focus the radiated power in any specific direction. Therefore, it is believed that the proposed dual-band four-element fractal antenna array with directional radiation patterns can be an ideal candidate for the high-efficiency IEEE 802.11ax WLANs (Wi-Fi 6E) and the upcoming 5G wireless and satellite communication systems.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • dielectric constant
  • glass
  • glass
  • thermoset