Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Keppler, Julia Katharina

  • Google
  • 1
  • 4
  • 35

Wageningen University & Research

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Characteristics of soy protein prepared using an aqueous ethanol washing process35citations

Places of action

Chart of shared publication
Bianeis, Marine
1 / 1 shared
Ndiaye, Mbalo
1 / 1 shared
Kyriakopoulou, Konstantina
1 / 2 shared
Peng, Yu
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Bianeis, Marine
  • Ndiaye, Mbalo
  • Kyriakopoulou, Konstantina
  • Peng, Yu
OrganizationsLocationPeople

article

Characteristics of soy protein prepared using an aqueous ethanol washing process

  • Bianeis, Marine
  • Ndiaye, Mbalo
  • Kyriakopoulou, Konstantina
  • Keppler, Julia Katharina
  • Peng, Yu
Abstract

Currently, the predominant process for soy protein concentrate (SPC) production is aqueous ethanol washing of hexane‐extracted soy meal. However, the use of hexane is less desired, which explains the increased interest in cold pressing for oil removal. In this study, cold‐pressed soy meal was used as the starting material, and a range of water/ethanol ratios was applied for the washing process to produce SPCs. Washing enriched the protein content for the SPCs, regardless of the solvent used. However, we conclude that washing with water (0% ethanol) or solvents with a high water/ethanol ratio (60% and above) can be more advantageous. Washing with a high water/ethanol ratio resulted in the highest yield, and SPCs with the highest protein solubility and water holding capacity. The water‐only washed SPC showed the highest viscosity, and formed gels with the highest gel strength and hardness among all the SPCs at a similar protein concentration. The variations in the functionality among the SPCs were attributed to protein changes, although the effects of non‐protein constituents such as sugar and oil might also be important. Overall, the aqueous ethanol washing process combined with cold‐pressed soy meal created SPCs comparable to commercial SPC in terms of composition, but with varied functionalities that are relevant for novel soy‐food developments.

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • strength
  • viscosity
  • hardness
  • washing
  • fractionation