Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gašparík, Miroslav

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Burning Properties of Combined Glued Laminated Timber2citations

Places of action

Chart of shared publication
Sahula, Lukáš
1 / 2 shared
Novák, David
1 / 4 shared
Kytka, Tomáš
1 / 2 shared
Karami, Elham
1 / 1 shared
Das, Sumanta
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Sahula, Lukáš
  • Novák, David
  • Kytka, Tomáš
  • Karami, Elham
  • Das, Sumanta
OrganizationsLocationPeople

article

Burning Properties of Combined Glued Laminated Timber

  • Sahula, Lukáš
  • Novák, David
  • Kytka, Tomáš
  • Karami, Elham
  • Gašparík, Miroslav
  • Das, Sumanta
Abstract

<jats:p>This study delved into the combustion properties of combined glulam bonded using polyurethane (PUR) and resorcinol-phenol-formaldehyde (RPF) adhesives. The experiment involved three distinct wood species, namely, spruce, alder, and beech, which were combined in homogeneous, non-homogeneous symmetrical, and non-homogeneous asymmetrical arrangements. These species were selected to represent a spectrum, namely, softwood (spruce), low-density hardwood (alder), and high-density hardwood (beech). The varying combinations of wood species illustrate potential compositions within structural elements, aiming to optimize mechanical bending resistance. Various parameters were measured during combustion, namely, the heat release rate (HRR), peak heat release rate (pHRR), mass loss rate (MLR), average rate of heat emission (ARHE), peak average rate of heat emission (MARHE), time to ignition (TTI), and effective heat of combustion (EHC). The findings indicate that incorporating beech wood into the composite glulam resulted in an increase in heat release, significantly altering the burning characteristics, which was particularly evident at the second peak. Conversely, the use of spruce wood exhibited the lowest heat release rate. Alder wood, when subjected to heat flux at the glued joint, displayed the highest heat emission, aligning with the results for EHC and MARHE. This observation suggests that wood species prone to early thermal decomposition emit more heat within a shorter duration. The time to ignition (TTI) was consistent, occurring between the first and second minute across all tested wood species and combinations. Notably, when subjected to heat flux, the glulam samples bonded with PUR adhesive experienced complete delamination of the initial two glued joints, whereas those bonded with RPF adhesive exhibited only partial delamination.</jats:p>

Topics
  • density
  • experiment
  • composite
  • combustion
  • wood
  • thermal decomposition