People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Palanisamy, Sivasubramanian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Influence of washing with sodium lauryl sulphate (SLS) surfactant on different properties of ramie fibrescitations
- 2024A Hybrid Design of Experiment Approach in Analyzing the Electrical Discharge Machining Influence on Stir Cast Al7075/B4C Metal Matrix Compositescitations
- 2024Effect of Stacking Sequence on Mechanical and Water Absorption Characteristics of Jute/Banana/Basalt Fabric Aluminium Fibre Laminates With Diamond Microexpanded Meshcitations
- 2024Mechanical, morphological and wear resistance of natural fiber / glass fiber-based polymer compositescitations
- 2024Evaluation of mechanical properties and Fick’s diffusion behaviour of aluminum-DMEM reinforced with hemp/bamboo/basalt woven fiber metal laminates (WFML) under different stacking sequencescitations
- 2023Selection and processing of natural fibers and nanocellulose for biocomposite applications: A brief reviewcitations
- 2023Effects of fiber loadings and lengths on mechanical properties of Sansevieria Cylindrica fiber reinforced natural rubber biocompositescitations
- 2023Effects of fiber loadings and lengths on mechanical properties of Sansevieria Cylindrica fiber reinforced natural rubber biocomposites
- 2023A comprehensive review on the mechanical, physical, and thermal properties of abaca fibre for their introduction into structural polymer compositescitations
- 2023Natural Fibres-Based Bio-Epoxy Composites _ Epoxy-Based Biocompositescitations
- 2021Effect of Alkali Treatment on the Properties of Acacia Caesia Bark Fibrescitations
- 2021Mechanical Properties of Phormium Tenax Reinforced Natural Rubber Compositescitations
Places of action
Organizations | Location | People |
---|
article
Mechanical Properties of Phormium Tenax Reinforced Natural Rubber Composites
Abstract
<jats:p>The introduction of natural fibers as a filler in a natural rubber (NR) matrix can be of relevance for their eco-friendly and sustainable nature as the substitute for carbon-based fillers. In this work, short Phormium tenax fibers were introduced in random orientation into a NR matrix in different lengths (6, 10, and 14 mm) and various amounts (10, 20, and 30%, taking 100 as the NR weight). The composite was fabricated using a two-roll mill according to American Society for Testing and Materials (ASTM) D3184-11 standard. Several properties were determined, namely tensile and tear characteristics, hardness, and abrasion resistance. The results suggest that the shortest fiber length used, 6 mm, offered the best combination between loss of mechanical (tensile and tear) properties and hardness and the most acceptable resistance to abrasion, with the properties increasing with the amount of fibers present in NR. As a consequence, it is indicated that a higher amount of fibers could be possibly introduced, especially to achieve harder composites, though this would require a more controlled mixing process not excessively reducing tensile elongation at break.</jats:p>