People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nagarajan, Rajini
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Mechanical, Vibration Damping and Acoustics characteristics of Hybrid Aloe vera /Jute/polyester composites
- 2024Mechanical, Vibration Damping and Acoustics characteristics of Hybrid Aloe vera /Jute/polyester compositescitations
- 2024Effects of infill density on mechanical properties of additively manufactured chopped carbon fiber reinforced PLA compositescitations
- 2024Effects of infill density on mechanical properties of additively manufactured chopped carbon fiber reinforced PLA composites
- 2024Characterization of Banana and Sisal Fiber Fabrics Reinforced Epoxy Hybrid Biocomposites with Cashew Nut Shell Filler for Structural Applications
- 2024Performance Evaluation of 3D-Printed ABS and Carbon Fiber-reinforced ABS Polymeric Spur Gears
- 2023Effects of fiber loadings and lengths on mechanical properties of Sansevieria Cylindrica fiber reinforced natural rubber biocompositescitations
- 2023Effects of fiber loadings and lengths on mechanical properties of Sansevieria Cylindrica fiber reinforced natural rubber biocomposites
- 2023Thermal, chemical, tensile and morphological characterization studies of bamboo fibre extracted from the indian species bambusa bamboscitations
- 2023Mechanical and thermo-mechanical behaviors of snake grass fiber-reinforced epoxy compositecitations
- 2022Tribological analysis of engineering plastics/steel friction pairs
- 2022Surface Damage Analysis on the Application of Abrasion and Slurry Erosion in Targeted Steels Using an Erosion Test Rigcitations
- 2022Effects of the face/core layer ratio on the mechanical properties of 3D printed wood/polylactic acid (PLA) green biocomposite panels with a gyroid corecitations
- 2021Effect of Alkali Treatment on the Properties of Acacia Caesia Bark Fibrescitations
- 2021Mechanical Properties of Phormium Tenax Reinforced Natural Rubber Compositescitations
- 2021Tribological analysis of engineering plastics/steel friction pairscitations
- 2020Effects of the Face/Core Layer Ratio on the Mechanical Properties of 3D Printed Wood/Polylactic Acid (PLA) Green Biocomposite Panels with a Gyroid Corecitations
Places of action
Organizations | Location | People |
---|
article
Mechanical Properties of Phormium Tenax Reinforced Natural Rubber Composites
Abstract
<jats:p>The introduction of natural fibers as a filler in a natural rubber (NR) matrix can be of relevance for their eco-friendly and sustainable nature as the substitute for carbon-based fillers. In this work, short Phormium tenax fibers were introduced in random orientation into a NR matrix in different lengths (6, 10, and 14 mm) and various amounts (10, 20, and 30%, taking 100 as the NR weight). The composite was fabricated using a two-roll mill according to American Society for Testing and Materials (ASTM) D3184-11 standard. Several properties were determined, namely tensile and tear characteristics, hardness, and abrasion resistance. The results suggest that the shortest fiber length used, 6 mm, offered the best combination between loss of mechanical (tensile and tear) properties and hardness and the most acceptable resistance to abrasion, with the properties increasing with the amount of fibers present in NR. As a consequence, it is indicated that a higher amount of fibers could be possibly introduced, especially to achieve harder composites, though this would require a more controlled mixing process not excessively reducing tensile elongation at break.</jats:p>