Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Blachowicz, Tomasz

  • Google
  • 10
  • 27
  • 138

Silesian University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Conception of magnetic memory switched by time dependant current density and current electron spin polarizationcitations
  • 2023Electrospinning of Magnetite-Polyacrylonitrile Composites for the Production of Oxygen Reduction Reaction Catalysts3citations
  • 2023Exchange Bias in Nanostructures: An Update16citations
  • 2022Electrospinning Nanofiber Mats with Magnetite Nanoparticles Using Various Needle-Based Techniques20citations
  • 2022Investigation of Low-Cost FDM-Printed Polymers for Elevated-Temperature Applications9citations
  • 2022Investigation of the Morphological Structure of Needle-Free Electrospun Magnetic Nanofiber Mats13citations
  • 2021Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells27citations
  • 2021Energies / Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells27citations
  • 2019Increased Mechanical Properties of Carbon Nanofiber Mats for Possible Medical Applicationscitations
  • 2019Electrospun Nanofiber Mats with Embedded Non-Sintered TiO2 for Dye-Sensitized Solar Cells (DSSCs)23citations

Places of action

Chart of shared publication
Steblinski, Paul
1 / 1 shared
Diestelhorst, Elise
1 / 2 shared
Rosas, Juana María
1 / 1 shared
Klöcker, Michaela
5 / 10 shared
Sabantina, Lilia
5 / 14 shared
Cordero, Tomás
1 / 1 shared
Mamun, Al
5 / 10 shared
García-Mateos, Francisco José
1 / 7 shared
Rodriguez-Mirasol, José
1 / 1 shared
Ruiz-Rosas, Ramiro
1 / 8 shared
Ehrmann, Andrea
5 / 18 shared
Wortmann, Martin
1 / 7 shared
Heide, Alexander
1 / 1 shared
Uthoff, Jana
1 / 1 shared
Storck, Jan Lukas
1 / 2 shared
Homburg, Sarah Vanessa
1 / 1 shared
Güth, Uwe
1 / 2 shared
Ehrmann, Guido
1 / 2 shared
Schwenzfeier Hellkamp, Eva
2 / 2 shared
Knefelkamp, Doerthe
2 / 2 shared
Schoden, Fabian
2 / 3 shared
Dotter, Marius
2 / 3 shared
Trabelsi, Marah
2 / 7 shared
Großerhode, Christina
2 / 2 shared
Cornelißen, Carsten
1 / 1 shared
Grötsch, Georg
1 / 1 shared
Streitenberger, Almuth
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2019

Co-Authors (by relevance)

  • Steblinski, Paul
  • Diestelhorst, Elise
  • Rosas, Juana María
  • Klöcker, Michaela
  • Sabantina, Lilia
  • Cordero, Tomás
  • Mamun, Al
  • García-Mateos, Francisco José
  • Rodriguez-Mirasol, José
  • Ruiz-Rosas, Ramiro
  • Ehrmann, Andrea
  • Wortmann, Martin
  • Heide, Alexander
  • Uthoff, Jana
  • Storck, Jan Lukas
  • Homburg, Sarah Vanessa
  • Güth, Uwe
  • Ehrmann, Guido
  • Schwenzfeier Hellkamp, Eva
  • Knefelkamp, Doerthe
  • Schoden, Fabian
  • Dotter, Marius
  • Trabelsi, Marah
  • Großerhode, Christina
  • Cornelißen, Carsten
  • Grötsch, Georg
  • Streitenberger, Almuth
OrganizationsLocationPeople

article

Electrospun Nanofiber Mats with Embedded Non-Sintered TiO2 for Dye-Sensitized Solar Cells (DSSCs)

  • Trabelsi, Marah
  • Blachowicz, Tomasz
  • Ehrmann, Andrea
  • Großerhode, Christina
  • Klöcker, Michaela
  • Sabantina, Lilia
  • Cornelißen, Carsten
  • Grötsch, Georg
  • Streitenberger, Almuth
  • Mamun, Al
Abstract

<jats:p>TiO2 is a semiconductor that is commonly used in dye-sensitized solar cells (DSSCs). However, the necessity of sintering the TiO2 layer is usually problematic due to the desired temperatures of typically 500 °C in cells that are prepared on polymeric or textile electrodes. This is why textile-based DSSCs often use metal fibers or metallic woven fabrics as front electrodes on which the TiO2 is coated. Alternatively, several research groups investigate the possibilities to reduce the necessary sintering temperatures by chemical or other pre-treatments of the TiO2. Here, we report on a simple method to avoid the sintering step by using a nanofiber mat as a matrix embedding TiO2 nanoparticles. The TiO2 layer can be dyed with natural dyes, resulting in a similar bathochromic shift of the UV/Vis spectrum, as it is known from sintered TiO2 on glass substrates, which indicates an equivalent chemical bonding. Our results indicate a new possibility for producing textile-based DSSCs with TiO2, even on textile fabrics that are not high-temperature resistant.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • glass
  • semiconductor
  • glass
  • sintering
  • woven